Ultrasoluble coverings of some nilpotent groups by a~cyclic group
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 512-531
Voir la notice de l'article provenant de la source Math-Net.Ru
-Let $F$ be a finite nilpotent group of odd order. For every finite cyclic
subgroup $A$ of odd order we find necessary and sufficient conditions
for a class $h\in H^2(F,A)$ to determine an ultrasoluble extension (under the
additional assumption of minimality of all $p$-Sylow subextensions to
the extension with class $h$ for all non-Abelian $p$-Sylow subgroups
$F_p$ of $F$), that is, for the existence of a Galois extension of number fields
$K/k$ with group $F$ such that the corresponding embedding problem is
ultrasoluble (it has solutions and all such solutions are fields). We also
establish a number of related results.
Keywords:
-embedding problem, ultrasolubility, co-embedding problem.
Mots-clés : concordance condition
Mots-clés : concordance condition
@article{IM2_2018_82_3_a3,
author = {D. D. Kiselev},
title = {Ultrasoluble coverings of some nilpotent groups by a~cyclic group},
journal = {Izvestiya. Mathematics },
pages = {512--531},
publisher = {mathdoc},
volume = {82},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a3/}
}
D. D. Kiselev. Ultrasoluble coverings of some nilpotent groups by a~cyclic group. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 512-531. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a3/