Ultrasoluble coverings of some nilpotent groups by a~cyclic group
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 512-531.

Voir la notice de l'article provenant de la source Math-Net.Ru

-Let $F$ be a finite nilpotent group of odd order. For every finite cyclic subgroup $A$ of odd order we find necessary and sufficient conditions for a class $h\in H^2(F,A)$ to determine an ultrasoluble extension (under the additional assumption of minimality of all $p$-Sylow subextensions to the extension with class $h$ for all non-Abelian $p$-Sylow subgroups $F_p$ of $F$), that is, for the existence of a Galois extension of number fields $K/k$ with group $F$ such that the corresponding embedding problem is ultrasoluble (it has solutions and all such solutions are fields). We also establish a number of related results.
Keywords: -embedding problem, ultrasolubility, co-embedding problem.
Mots-clés : concordance condition
@article{IM2_2018_82_3_a3,
     author = {D. D. Kiselev},
     title = {Ultrasoluble coverings of some nilpotent groups by a~cyclic group},
     journal = {Izvestiya. Mathematics },
     pages = {512--531},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a3/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Ultrasoluble coverings of some nilpotent groups by a~cyclic group
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 512
EP  - 531
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a3/
LA  - en
ID  - IM2_2018_82_3_a3
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Ultrasoluble coverings of some nilpotent groups by a~cyclic group
%J Izvestiya. Mathematics 
%D 2018
%P 512-531
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a3/
%G en
%F IM2_2018_82_3_a3
D. D. Kiselev. Ultrasoluble coverings of some nilpotent groups by a~cyclic group. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 512-531. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a3/

[1] V. V. Išhanov, “On the semidirect imbedding problem with nilpotent kernel”, Math. USSR-Izv., 10:1 (1976), 1–23 | DOI | MR | Zbl

[2] A. V. Yakovlev, “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. matem., 28:3 (1964), 645–660 | MR | Zbl

[3] D. D. Kiselev, B. B. Lur'e, “Ultrasolvability and singularity in the embedding problem”, J. Math. Sci. (N. Y.), 199:3 (2014), 306–312 | DOI | MR | Zbl

[4] V. V. Ishkhanov, B. B. Lur'e, D. K. Faddeev, The embedding problem in Galois theory, Transl. Math. Monogr., 165, Amer. Math. Soc., Providence, RI, 1997, xii+182 pp. | MR | MR | Zbl | Zbl

[5] D. D. Kiselev, “Examples of embedding problems the only solutions of which are fields”, Russian Math. Surveys, 68:4 (2013), 776–778 | DOI | DOI | MR | Zbl

[6] D. D. Kiselev, “Ob ultrarazreshimosti gruppovykh $p$-rasshirenii abelevoi gruppy s pomoschyu tsiklicheskogo yadra”, Voprosy teorii predstavlenii algebr i grupp. 30, Zap. nauch. sem. POMI, 452, POMI, SPb., 2016, 108–131 | MR

[7] D. D. Kiselev, I. A. Chubarov, “Ob ultrarazreshimosti nekotorykh klassov minimalnykh nepolupryamykh $p$-rasshirenii s tsiklicheskim yadrom dlya $p>2$”, Voprosy teorii predstavlenii algebr i grupp. 30, Zap. nauch. sem. POMI, 452, POMI, SPb., 2016, 132–157 | MR

[8] D. D. Kiselev, “On ultrasolvable embedding problems with cyclic kernel”, Russian Math. Surveys, 71:6 (2016), 1149–1151 | DOI | DOI | MR | Zbl

[9] V. V. Išhanov, “The embedding problem with given localizations”, Math. USSR-Izv., 9:3 (1975), 481–492 | DOI | MR | Zbl

[10] I. Reiner, Maximal orders, London Math. Soc. Monogr. (N.S.), 28, Corrected reprint of the 1975 original, The Clarendon Press, Oxford Univ. Press, Oxford, 2003, xiv+395 pp. | MR | Zbl

[11] A. V. Yakovlev, “Ultrasolvable embedding problem for number fields”, St. Petersburg Math. J., 27:6 (2016), 1049–1051 | DOI | MR | Zbl

[12] Algebraic number theory, eds. J. W. S. Cassels, A. Fröhlich, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967, xviii+366 pp. | MR | MR | Zbl

[13] B. B. Lur'e, “Universally solvable embedding problems”, Proc. Steklov Inst. Math., 183 (1991), 141–147 | MR | Zbl

[14] R. Camina, “Subgroups of the Nottingham group”, J. Algebra, 196:1 (1997), 101–113 | DOI | MR | Zbl

[15] D. D. Kiselev, “Explicit embeddings of finite abelian $p$-groups in the group $\mathcal J(\mathbb F_p)$”, Math. Notes, 97:1 (2015), 63–68 | DOI | DOI | MR | Zbl

[16] B. Klopsch, “Automorphisms of the Nottingham group”, J. Algebra, 223:1 (2000), 37–56 | DOI | MR | Zbl