Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_3_a3, author = {D. D. Kiselev}, title = {Ultrasoluble coverings of some nilpotent groups by a~cyclic group}, journal = {Izvestiya. Mathematics }, pages = {512--531}, publisher = {mathdoc}, volume = {82}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a3/} }
D. D. Kiselev. Ultrasoluble coverings of some nilpotent groups by a~cyclic group. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 512-531. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a3/
[1] V. V. Išhanov, “On the semidirect imbedding problem with nilpotent kernel”, Math. USSR-Izv., 10:1 (1976), 1–23 | DOI | MR | Zbl
[2] A. V. Yakovlev, “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. matem., 28:3 (1964), 645–660 | MR | Zbl
[3] D. D. Kiselev, B. B. Lur'e, “Ultrasolvability and singularity in the embedding problem”, J. Math. Sci. (N. Y.), 199:3 (2014), 306–312 | DOI | MR | Zbl
[4] V. V. Ishkhanov, B. B. Lur'e, D. K. Faddeev, The embedding problem in Galois theory, Transl. Math. Monogr., 165, Amer. Math. Soc., Providence, RI, 1997, xii+182 pp. | MR | MR | Zbl | Zbl
[5] D. D. Kiselev, “Examples of embedding problems the only solutions of which are fields”, Russian Math. Surveys, 68:4 (2013), 776–778 | DOI | DOI | MR | Zbl
[6] D. D. Kiselev, “Ob ultrarazreshimosti gruppovykh $p$-rasshirenii abelevoi gruppy s pomoschyu tsiklicheskogo yadra”, Voprosy teorii predstavlenii algebr i grupp. 30, Zap. nauch. sem. POMI, 452, POMI, SPb., 2016, 108–131 | MR
[7] D. D. Kiselev, I. A. Chubarov, “Ob ultrarazreshimosti nekotorykh klassov minimalnykh nepolupryamykh $p$-rasshirenii s tsiklicheskim yadrom dlya $p>2$”, Voprosy teorii predstavlenii algebr i grupp. 30, Zap. nauch. sem. POMI, 452, POMI, SPb., 2016, 132–157 | MR
[8] D. D. Kiselev, “On ultrasolvable embedding problems with cyclic kernel”, Russian Math. Surveys, 71:6 (2016), 1149–1151 | DOI | DOI | MR | Zbl
[9] V. V. Išhanov, “The embedding problem with given localizations”, Math. USSR-Izv., 9:3 (1975), 481–492 | DOI | MR | Zbl
[10] I. Reiner, Maximal orders, London Math. Soc. Monogr. (N.S.), 28, Corrected reprint of the 1975 original, The Clarendon Press, Oxford Univ. Press, Oxford, 2003, xiv+395 pp. | MR | Zbl
[11] A. V. Yakovlev, “Ultrasolvable embedding problem for number fields”, St. Petersburg Math. J., 27:6 (2016), 1049–1051 | DOI | MR | Zbl
[12] Algebraic number theory, eds. J. W. S. Cassels, A. Fröhlich, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967, xviii+366 pp. | MR | MR | Zbl
[13] B. B. Lur'e, “Universally solvable embedding problems”, Proc. Steklov Inst. Math., 183 (1991), 141–147 | MR | Zbl
[14] R. Camina, “Subgroups of the Nottingham group”, J. Algebra, 196:1 (1997), 101–113 | DOI | MR | Zbl
[15] D. D. Kiselev, “Explicit embeddings of finite abelian $p$-groups in the group $\mathcal J(\mathbb F_p)$”, Math. Notes, 97:1 (2015), 63–68 | DOI | DOI | MR | Zbl
[16] B. Klopsch, “Automorphisms of the Nottingham group”, J. Algebra, 223:1 (2000), 37–56 | DOI | MR | Zbl