Representation of solutions of evolution equations on a~ramified surface by Feynman formulae
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 494-511

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain solutions of parabolic second-order differential equations for functions in the class $L_1(K)$ defined on a ramified surface $K$. By using Chernoff's theorem, we prove that such solutions, whenever they exist, can be represented by Lagrangian Feynman formulae, that is, they can be written as limits of integrals over Cartesian powers of the configuration space as the number of factors tends to infinity.
Keywords: parabolic differential equation, ramified surface, Chernoff's theorem.
Mots-clés : Feynman formula
@article{IM2_2018_82_3_a2,
     author = {V. A. Dubravina},
     title = {Representation of solutions of evolution equations on a~ramified surface by {Feynman} formulae},
     journal = {Izvestiya. Mathematics },
     pages = {494--511},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/}
}
TY  - JOUR
AU  - V. A. Dubravina
TI  - Representation of solutions of evolution equations on a~ramified surface by Feynman formulae
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 494
EP  - 511
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/
LA  - en
ID  - IM2_2018_82_3_a2
ER  - 
%0 Journal Article
%A V. A. Dubravina
%T Representation of solutions of evolution equations on a~ramified surface by Feynman formulae
%J Izvestiya. Mathematics 
%D 2018
%P 494-511
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/
%G en
%F IM2_2018_82_3_a2
V. A. Dubravina. Representation of solutions of evolution equations on a~ramified surface by Feynman formulae. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 494-511. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/