Representation of solutions of evolution equations on a~ramified surface by Feynman formulae
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 494-511
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain solutions of parabolic second-order differential equations
for functions in the class $L_1(K)$ defined on a ramified surface $K$.
By using Chernoff's theorem, we prove that such solutions,
whenever they exist, can be represented by Lagrangian Feynman formulae,
that is, they can be written as limits of integrals over Cartesian powers
of the configuration space as the number of factors tends to infinity.
Keywords:
parabolic differential equation, ramified surface, Chernoff's theorem.
Mots-clés : Feynman formula
Mots-clés : Feynman formula
@article{IM2_2018_82_3_a2,
author = {V. A. Dubravina},
title = {Representation of solutions of evolution equations on a~ramified surface by {Feynman} formulae},
journal = {Izvestiya. Mathematics },
pages = {494--511},
publisher = {mathdoc},
volume = {82},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/}
}
TY - JOUR AU - V. A. Dubravina TI - Representation of solutions of evolution equations on a~ramified surface by Feynman formulae JO - Izvestiya. Mathematics PY - 2018 SP - 494 EP - 511 VL - 82 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/ LA - en ID - IM2_2018_82_3_a2 ER -
V. A. Dubravina. Representation of solutions of evolution equations on a~ramified surface by Feynman formulae. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 494-511. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/