Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_3_a2, author = {V. A. Dubravina}, title = {Representation of solutions of evolution equations on a~ramified surface by {Feynman} formulae}, journal = {Izvestiya. Mathematics }, pages = {494--511}, publisher = {mathdoc}, volume = {82}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/} }
TY - JOUR AU - V. A. Dubravina TI - Representation of solutions of evolution equations on a~ramified surface by Feynman formulae JO - Izvestiya. Mathematics PY - 2018 SP - 494 EP - 511 VL - 82 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/ LA - en ID - IM2_2018_82_3_a2 ER -
V. A. Dubravina. Representation of solutions of evolution equations on a~ramified surface by Feynman formulae. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 494-511. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a2/
[1] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp. | MR | Zbl
[2] V. A. Dubravina, “Feynman formulas for solutions of evolution equations on ramified surfaces”, Russ. J. Math. Phys., 21:2 (2014), 285–288 | DOI | MR | Zbl
[3] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 400 pp.
[4] B. Simon, The $P(\varphi)_2$ Euclidean (quantum) field theory, Princeton Series in Physics, Princeton Univ. Press, Princeton, N.J., 1974, xx+392 pp. | MR | Zbl
[5] Symplectic geometry and topology, Lecture notes from the graduate summer school program (Park City, UT, USA, 1997), IAS/Park City Math. Ser., 7, eds. Ya. Eliashberg, L. Traynor, Amer. Math. Soc., Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999, xiv+430 pp. | MR | Zbl
[6] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl
[7] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl
[8] M. Kh. Numan Elsheikh, Operatory Shredingera na razvetvlennykh mnogoobraziyakh i ikh approksimatsii, Diss. ... kand. fiz.-matem. nauk, RUDN, M., 2014, 113 pp.
[9] A. S. Plyashechnik, “Feynman formulas for second-order parabolic equations with variable coefficients”, Russ. J. Math. Phys., 20:3 (2013), 377–379 | DOI | MR | Zbl
[10] O. G. Smolyanov, D. S. Tolstyga, “Feynman formulas for stochastic and quantum dynamics of particles in multidimensional domains”, Dokl. Math., 88:2 (2013), 541–544 | DOI | MR | Zbl
[11] O. G. Smolyanov, D. S. Tolstyga, H. von Weizsäcker, “Feynman description of the one-dimensional dynamics of particles whose masses piecewise continuously depend on coordinates”, Dokl. Math., 84:3 (2011), 804–807 | DOI | MR | Zbl
[12] M. Gadella, Ş. Kuru, J. Negro, “Self-adjoint Hamiltonians with a mass jump: general matching conditions”, Phys. Lett. A, 362:4 (2007), 265–268 | DOI | MR | Zbl