Basis properties of affine Walsh systems in symmetric spaces
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 451-476
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the basis properties of affine Walsh-type systems in symmetric
spaces. We show that the ordinary Walsh system is a basis in a separable
symmetric space $X$ if and only if the Boyd indices of $X$ are non-trivial,
that is, $0\alpha_X\le\beta_X1$. In the more general situation when the
generating function $f$ is the sum of a Rademacher series, we find exact
conditions for the affine system $\{f_n\}_{n=0}^\infty$ to be equivalent
to the Walsh system in an arbitrary separable s. s. with non-trivial Boyd
indices. We also obtain sufficient conditions for the basis property.
In particular, it follows from these conditions that for every
$p\in(1,\infty)$ there is a function $f$ such that the affine Walsh system
$\{f_n\}_{n=0}^{\infty}$ generated by $f$ is a basis in those and only those
separable s. s. $X$ that satisfy $1/p\alpha_X\le\beta_X1$.
Keywords:
basis, Walsh functions, Rademacher functions, Haar functions,
symmetric space, affine Walsh-type system.
@article{IM2_2018_82_3_a0,
author = {S. V. Astashkin and P. A. Terekhin},
title = {Basis properties of affine {Walsh} systems in symmetric spaces},
journal = {Izvestiya. Mathematics },
pages = {451--476},
publisher = {mathdoc},
volume = {82},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/}
}
S. V. Astashkin; P. A. Terekhin. Basis properties of affine Walsh systems in symmetric spaces. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 451-476. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/