Basis properties of affine Walsh systems in symmetric spaces
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 451-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the basis properties of affine Walsh-type systems in symmetric spaces. We show that the ordinary Walsh system is a basis in a separable symmetric space $X$ if and only if the Boyd indices of $X$ are non-trivial, that is, $0\alpha_X\le\beta_X1$. In the more general situation when the generating function $f$ is the sum of a Rademacher series, we find exact conditions for the affine system $\{f_n\}_{n=0}^\infty$ to be equivalent to the Walsh system in an arbitrary separable s. s. with non-trivial Boyd indices. We also obtain sufficient conditions for the basis property. In particular, it follows from these conditions that for every $p\in(1,\infty)$ there is a function $f$ such that the affine Walsh system $\{f_n\}_{n=0}^{\infty}$ generated by $f$ is a basis in those and only those separable s. s. $X$ that satisfy $1/p\alpha_X\le\beta_X1$.
Keywords: basis, Walsh functions, Rademacher functions, Haar functions, symmetric space, affine Walsh-type system.
@article{IM2_2018_82_3_a0,
     author = {S. V. Astashkin and P. A. Terekhin},
     title = {Basis properties of affine {Walsh} systems in symmetric spaces},
     journal = {Izvestiya. Mathematics },
     pages = {451--476},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - P. A. Terekhin
TI  - Basis properties of affine Walsh systems in symmetric spaces
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 451
EP  - 476
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/
LA  - en
ID  - IM2_2018_82_3_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A P. A. Terekhin
%T Basis properties of affine Walsh systems in symmetric spaces
%J Izvestiya. Mathematics 
%D 2018
%P 451-476
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/
%G en
%F IM2_2018_82_3_a0
S. V. Astashkin; P. A. Terekhin. Basis properties of affine Walsh systems in symmetric spaces. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 451-476. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/

[1] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl

[2] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., 19, no. 217, Amer. Math. Soc., Providence, R.I., 1979, v+298 pp. | DOI | MR | Zbl

[3] I. Novikov, E. Semenov, Haar series and linear operators, Math. Appl., 367, Kluwer Acad. Publ., Dordrecht, 1997, xvi+218 pp. | DOI | MR | Zbl

[4] P. G. Dodds, E. M. Semenov, F. A. Sukochev, “RUC systems in rearrangement invariant spaces”, Studia Math., 151:2 (2002), 161–173 | DOI | MR | Zbl

[5] S. V. Astashkin, P. A. Terekhin, “Affine Walsh type systems of functions in symmetric spaces”, Sb. Math., 209:4 (2018) | DOI

[6] B. Granados, “Walsh wavelets”, Ann. Univ. Sci. Budapest. Sect. Comput., 13 (1992), 225–236 | MR | Zbl

[7] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl

[8] P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Ortogonalizatsiya i popolnenie”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(1) (2014), 395–400 | Zbl

[9] P. A. Terekhin, “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | DOI | MR | Zbl

[10] P. R. Halmos, “Shifts on Hilbert spaces”, J. Reine Angew. Math., 1961:208 (1961), 102–112 | DOI | MR | Zbl

[11] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, R.I., 1982, xii+375 pp. | MR | MR | Zbl | Zbl

[12] V. A. Rodin, E. M. Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl

[13] S. V. Astashkin, “Tensor product in symmetric function spaces”, Fourth International Conference on Function Spaces (Zielona Góra, 1995), Collect. Math., 48:4-6 (1997), 375–391 | MR | Zbl

[14] S. V. Astashkin, L. Maligranda, E. M. Semenov, “Multiplicator space and complemented subspaces of rearrangement invariant space”, J. Funct. Anal., 202:1 (2003), 247–276 | DOI | MR | Zbl

[15] Kh. X. X. Al-Dzhourani, V. A. Mironov, P. A. Terekhin, “Affinnye sistemy funktsii tipa Uolsha. Polnota i minimalnost”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 247–256 | MR | Zbl

[16] P. A. Terekhin, “Affine Riesz bases and the dual function”, Sb. Math., 207:9 (2016), 1287–1318 | DOI | DOI | MR | Zbl

[17] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[18] P. F. X. Müller, Isomorphisms between $H^1$ spaces, IMPAN Monogr. Mat. (N. S.), 66, Birkhäuser Verlag, Basel, 2005, xiv+453 pp. | MR | Zbl

[19] O. V. Lelond, E. M. Semenov, S. N. Uksusov, “The space of Fourier–Haar multipliers”, Siberian Math. J., 46:1 (2005), 103–110 | DOI | MR | Zbl

[20] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl

[21] P. R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto, Ont.–London, 1967, xvii+365 pp. | MR | MR | Zbl | Zbl

[22] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb., 50, Springer-Verlag, Berlin–New York, 1970, viii+169 pp. | MR | Zbl