Basis properties of affine Walsh systems in symmetric spaces
Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 451-476

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the basis properties of affine Walsh-type systems in symmetric spaces. We show that the ordinary Walsh system is a basis in a separable symmetric space $X$ if and only if the Boyd indices of $X$ are non-trivial, that is, $0\alpha_X\le\beta_X1$. In the more general situation when the generating function $f$ is the sum of a Rademacher series, we find exact conditions for the affine system $\{f_n\}_{n=0}^\infty$ to be equivalent to the Walsh system in an arbitrary separable s. s. with non-trivial Boyd indices. We also obtain sufficient conditions for the basis property. In particular, it follows from these conditions that for every $p\in(1,\infty)$ there is a function $f$ such that the affine Walsh system $\{f_n\}_{n=0}^{\infty}$ generated by $f$ is a basis in those and only those separable s. s. $X$ that satisfy $1/p\alpha_X\le\beta_X1$.
Keywords: basis, Walsh functions, Rademacher functions, Haar functions, symmetric space, affine Walsh-type system.
@article{IM2_2018_82_3_a0,
     author = {S. V. Astashkin and P. A. Terekhin},
     title = {Basis properties of affine {Walsh} systems in symmetric spaces},
     journal = {Izvestiya. Mathematics },
     pages = {451--476},
     publisher = {mathdoc},
     volume = {82},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - P. A. Terekhin
TI  - Basis properties of affine Walsh systems in symmetric spaces
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 451
EP  - 476
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/
LA  - en
ID  - IM2_2018_82_3_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A P. A. Terekhin
%T Basis properties of affine Walsh systems in symmetric spaces
%J Izvestiya. Mathematics 
%D 2018
%P 451-476
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/
%G en
%F IM2_2018_82_3_a0
S. V. Astashkin; P. A. Terekhin. Basis properties of affine Walsh systems in symmetric spaces. Izvestiya. Mathematics , Tome 82 (2018) no. 3, pp. 451-476. http://geodesic.mathdoc.fr/item/IM2_2018_82_3_a0/