Multi-normed spaces based on non-discrete measures and their tensor products
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 428-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lambert discovered a new type of structures situated, in a sense, between normed spaces and abstract operator spaces. His definition was based on the notion of amplifying a normed space by means of the spaces $\ell_2^n$. Later, several mathematicians studied more general structures (`$p$-multi-normed spaces') introduced by means of the spaces $\ell_p^n$, $1\le p\le\infty$. We pass from $\ell_p$ to $L_p(X,\mu)$ with an arbitrary measure. This becomes possible in the framework of the non-coordinate approach to the notion of amplification. In the case of a discrete counting measure, this approach is equivalent to the approach in the papers mentioned. Two categories arise. One consists of amplifications by means of an arbitrary normed space, and the other consists of $p$-convex amplifications by means of $L_p(X,\mu)$. Each of them has its own tensor product of objects (the existence of each product is proved by a separate explicit construction). As a final result, we show that the `$p$-convex' tensor product has an especially transparent form for the minimal $L_p$-amplifications of $L_q$-spaces, where $q$ is conjugate to $p$. Namely, tensoring $L_q(Y,\nu)$ and $L_q(Z,\lambda)$, we obtain $L_q(Y\times Z,\,\nu\times\lambda)$.
Keywords: $\mathbf{L}$-space, $\mathbf{L}$-boundedness, general $\mathbf{L}$-tensor product, $p$-convex tensor product.
@article{IM2_2018_82_2_a7,
     author = {A. Ya. Helemskii},
     title = {Multi-normed spaces based on non-discrete measures and their tensor products},
     journal = {Izvestiya. Mathematics },
     pages = {428--449},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a7/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - Multi-normed spaces based on non-discrete measures and their tensor products
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 428
EP  - 449
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a7/
LA  - en
ID  - IM2_2018_82_2_a7
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T Multi-normed spaces based on non-discrete measures and their tensor products
%J Izvestiya. Mathematics 
%D 2018
%P 428-449
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a7/
%G en
%F IM2_2018_82_2_a7
A. Ya. Helemskii. Multi-normed spaces based on non-discrete measures and their tensor products. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 428-449. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a7/

[1] A. Lambert, Operatorfolgenräume. Eine Kategorie auf dem Weg von den Banach–Räumen zu den Operatorräumen, Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften, Univ. des Saarlandes, Saarbrücken, 2002

[2] A. Lambert, M. Neufang, V. Runde, “Operator space structure and amenability for Figà–Talamanca–Herz algebras”, J. Funct. Anal., 211:1 (2004), 245–269 | DOI | MR | Zbl

[3] E. G. Effros, Zhong-Jin Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Clarendon Press, Oxford Univ. Press, New York, 2000, xvi+363 pp. | MR | Zbl

[4] G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003, viii+478 pp. | DOI | MR | Zbl

[5] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp. | MR | Zbl

[6] D. P. Blecher, C. Le Merdy, Operator algebras and their modules – an operator space approach, London Math. Soc. Monogr. (N.S.), 30, The Clarendon Press, Oxford Univ. Press, Oxford, 2004, x+387 pp. | DOI | MR | Zbl

[7] A. Ya. Khelemskii, Kvantovyi funktsionalnyi analiz v beskoordinatnom izlozhenii, MTsNMO, M., 2009, 304 pp.

[8] H. G. Dales, M. E. Polyakov, “Multi-normed spaces”, Dissertationes Math. (Rozprawy Mat.), 488 (2012), 1–165 | DOI | MR | Zbl

[9] H. G. Dales, M. Daws, H. L. Pham, P. Ramsden, “Multi-norms and the injectivity of $L^p(G)$”, J. Lond. Math. Soc. (2), 86:3 (2012), 779–809 | DOI | MR | Zbl

[10] H. G. Dales, M. Daws, H. L. Pham, P. Ramsden, “Equivalence of multi-norms”, Dissertationes Math. (Rozprawy Mat.), 498 (2014), 1–53 | DOI | MR | Zbl

[11] H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky, “Multi-norms and Banach lattices”, Dissertationes Math. (Rozprawy Mat.), 524 (2017), 1–115 | DOI | MR | Zbl

[12] A. Ya. Helemskii, “Tensor products in quantum functional analysis: the non-matricial approach”, Topological algebras and applications, Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007, 199–223 | DOI | MR | Zbl

[13] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[14] E. G. Effros, “Advances in quantized functional analysis”, Proceedings of the international congress of mathematicians (Berkeley, Calif., 1986), v. 2, Amer. Math. Soc., Providence, RI, 1987, 906–916 | MR | Zbl

[15] J. Tomiyama, “On the transpose map of matrix algebras”, Proc. Amer. Math. Soc., 88:4 (1983), 635–638 | DOI | MR | Zbl

[16] H. E. Lacey, The isometric theory of classical Banach spaces, Grundlehren Math. Wiss., 208, Springer-Verlag, New York–Heidelberg, 1974, x+270 pp. | DOI | MR | Zbl

[17] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., 25, Cambridge Univ. Press, Cambridge, 1991, xiv+382 pp. | DOI | MR | Zbl

[18] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York–Berlin, 1971, ix+262 pp. | MR | Zbl

[19] A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006, xviii+468 pp. | MR | Zbl

[20] M. Daws, “$p$-operator spaces and Figà–Talamanca–Herz algebras”, J. Operator Theory, 63:1 (2010), 47–83 | MR | Zbl

[21] G. Pisier, “Completely bounded maps between sets of Banach space operators”, Indiana Univ. Math. J., 39:1 (1990), 249–277 | DOI | MR | Zbl

[22] C. Le Merdy, “Factorization of $p$-completely bounded multilinear maps”, Pacific J. Math., 172:1 (1996), 187–213 | DOI | MR | Zbl

[23] D. P. Blecher, V. I. Paulsen, “Tensor products of operator spaces”, J. Funct. Anal., 99:2 (1991), 262–292 | DOI | MR | Zbl

[24] E. G. Effros, Zhong-Jin Ruan, “A new approach to operator spaces”, Canad. Math. Bull., 34:3 (1991), 329–337 | DOI | MR | Zbl

[25] J. Cigler, V. Losert, P. Michor, Banach modules and functors on categories of Banach spaces, Lecture Notes in Pure and Appl. Math., 46, Marcel Dekker, Inc., New York, 1979, xv+282 pp. | MR | Zbl

[26] A. Defant, K. Floret, Tensor norms and operator ideals, North-Holland Math. Stud., 176, North-Holland, Amsterdam, 1993, xii+566 pp. | MR | Zbl

[27] R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2002, xiv+225 pp. | DOI | MR | Zbl

[28] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, R.I., 1955, 140 pp. | DOI | MR | Zbl