Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_2_a7, author = {A. Ya. Helemskii}, title = {Multi-normed spaces based on non-discrete measures and their tensor products}, journal = {Izvestiya. Mathematics }, pages = {428--449}, publisher = {mathdoc}, volume = {82}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a7/} }
A. Ya. Helemskii. Multi-normed spaces based on non-discrete measures and their tensor products. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 428-449. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a7/
[1] A. Lambert, Operatorfolgenräume. Eine Kategorie auf dem Weg von den Banach–Räumen zu den Operatorräumen, Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften, Univ. des Saarlandes, Saarbrücken, 2002
[2] A. Lambert, M. Neufang, V. Runde, “Operator space structure and amenability for Figà–Talamanca–Herz algebras”, J. Funct. Anal., 211:1 (2004), 245–269 | DOI | MR | Zbl
[3] E. G. Effros, Zhong-Jin Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Clarendon Press, Oxford Univ. Press, New York, 2000, xvi+363 pp. | MR | Zbl
[4] G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003, viii+478 pp. | DOI | MR | Zbl
[5] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp. | MR | Zbl
[6] D. P. Blecher, C. Le Merdy, Operator algebras and their modules – an operator space approach, London Math. Soc. Monogr. (N.S.), 30, The Clarendon Press, Oxford Univ. Press, Oxford, 2004, x+387 pp. | DOI | MR | Zbl
[7] A. Ya. Khelemskii, Kvantovyi funktsionalnyi analiz v beskoordinatnom izlozhenii, MTsNMO, M., 2009, 304 pp.
[8] H. G. Dales, M. E. Polyakov, “Multi-normed spaces”, Dissertationes Math. (Rozprawy Mat.), 488 (2012), 1–165 | DOI | MR | Zbl
[9] H. G. Dales, M. Daws, H. L. Pham, P. Ramsden, “Multi-norms and the injectivity of $L^p(G)$”, J. Lond. Math. Soc. (2), 86:3 (2012), 779–809 | DOI | MR | Zbl
[10] H. G. Dales, M. Daws, H. L. Pham, P. Ramsden, “Equivalence of multi-norms”, Dissertationes Math. (Rozprawy Mat.), 498 (2014), 1–53 | DOI | MR | Zbl
[11] H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky, “Multi-norms and Banach lattices”, Dissertationes Math. (Rozprawy Mat.), 524 (2017), 1–115 | DOI | MR | Zbl
[12] A. Ya. Helemskii, “Tensor products in quantum functional analysis: the non-matricial approach”, Topological algebras and applications, Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007, 199–223 | DOI | MR | Zbl
[13] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl
[14] E. G. Effros, “Advances in quantized functional analysis”, Proceedings of the international congress of mathematicians (Berkeley, Calif., 1986), v. 2, Amer. Math. Soc., Providence, RI, 1987, 906–916 | MR | Zbl
[15] J. Tomiyama, “On the transpose map of matrix algebras”, Proc. Amer. Math. Soc., 88:4 (1983), 635–638 | DOI | MR | Zbl
[16] H. E. Lacey, The isometric theory of classical Banach spaces, Grundlehren Math. Wiss., 208, Springer-Verlag, New York–Heidelberg, 1974, x+270 pp. | DOI | MR | Zbl
[17] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., 25, Cambridge Univ. Press, Cambridge, 1991, xiv+382 pp. | DOI | MR | Zbl
[18] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York–Berlin, 1971, ix+262 pp. | MR | Zbl
[19] A. Ya. Helemskii, Lectures and exercises on functional analysis, Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006, xviii+468 pp. | MR | Zbl
[20] M. Daws, “$p$-operator spaces and Figà–Talamanca–Herz algebras”, J. Operator Theory, 63:1 (2010), 47–83 | MR | Zbl
[21] G. Pisier, “Completely bounded maps between sets of Banach space operators”, Indiana Univ. Math. J., 39:1 (1990), 249–277 | DOI | MR | Zbl
[22] C. Le Merdy, “Factorization of $p$-completely bounded multilinear maps”, Pacific J. Math., 172:1 (1996), 187–213 | DOI | MR | Zbl
[23] D. P. Blecher, V. I. Paulsen, “Tensor products of operator spaces”, J. Funct. Anal., 99:2 (1991), 262–292 | DOI | MR | Zbl
[24] E. G. Effros, Zhong-Jin Ruan, “A new approach to operator spaces”, Canad. Math. Bull., 34:3 (1991), 329–337 | DOI | MR | Zbl
[25] J. Cigler, V. Losert, P. Michor, Banach modules and functors on categories of Banach spaces, Lecture Notes in Pure and Appl. Math., 46, Marcel Dekker, Inc., New York, 1979, xv+282 pp. | MR | Zbl
[26] A. Defant, K. Floret, Tensor norms and operator ideals, North-Holland Math. Stud., 176, North-Holland, Amsterdam, 1993, xii+566 pp. | MR | Zbl
[27] R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2002, xiv+225 pp. | DOI | MR | Zbl
[28] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, R.I., 1955, 140 pp. | DOI | MR | Zbl