Integrals of Bessel processes and multi-dimensional Ornstein--Uhlenbeck processes:
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 377-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove results on exact asymptotics of the expectations $\mathbf{E}_a \exp \bigl(-\int_0^T \xi_q^p(t) \,dt \bigr)$, $\mathbf{E}_a \bigl[ \exp \bigl(-\int_0^T \xi_q^p(t) \,dt \bigr) \bigm| \xi_q(T)=b \bigr]$ as $T\to\infty$ for $p>0$, $a\geqslant 0$, $b\geqslant 0$, where $\xi_q(t)$, $t\geqslant 0$, is a Bessel process of order $q\geqslant-1/2$. We also find exact asymptotics of the probabilities $\mathbf{P} \bigl\{ \int_0^1 \sum_{k=1}^n |Y_k(t)|^p \,dt \leqslant \varepsilon^p \bigr\}$, $\mathbf{P} \bigl\{ \int_0^1 \bigl[ \sum_{k=1}^n Y_k^2(t) \bigr]^{p/2} \,dt \leqslant \varepsilon^p \bigr\}$ as $\varepsilon\to 0$, where $\mathbf{Y}(t)=(Y_1(t),\dots, Y_n(t))$, $t\geqslant 0$, is the $n$-dimensional non-stationary Ornstein–Uhlenbeck process with a parameter $\gamma=(\gamma_1, \dots, \gamma_n)$ starting at the origin. We also obtain a number of other results. Numerical values of the asymptotics are given for $p=1$, $p=2$.
Keywords: Bessel processes, multi-dimensional Wiener process, Girsanov's theorem, small deviations, Schrödinger operator, Airy function, Bessel function.
Mots-clés : Feynman–Kac formula
@article{IM2_2018_82_2_a5,
     author = {V. R. Fatalov},
     title = {Integrals of {Bessel} processes and multi-dimensional {Ornstein--Uhlenbeck} processes:},
     journal = {Izvestiya. Mathematics },
     pages = {377--406},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a5/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Integrals of Bessel processes and multi-dimensional Ornstein--Uhlenbeck processes:
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 377
EP  - 406
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a5/
LA  - en
ID  - IM2_2018_82_2_a5
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Integrals of Bessel processes and multi-dimensional Ornstein--Uhlenbeck processes:
%J Izvestiya. Mathematics 
%D 2018
%P 377-406
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a5/
%G en
%F IM2_2018_82_2_a5
V. R. Fatalov. Integrals of Bessel processes and multi-dimensional Ornstein--Uhlenbeck processes:. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 377-406. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a5/

[1] A. Kolmogoroff, “Über die analitischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl

[2] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Grundlehren Math. Wiss., 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–New York, 1965, xvii+321 pp. | MR | Zbl | Zbl

[3] A. N. Borodin, P. Salminen, Handbook of Brownian motion – facts and formulae, Probab. Appl., Birkhäuser Verlag, Basel, 1996, xiv+462 pp. | DOI | MR | Zbl

[4] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 3rd ed., Springer-Verlag, Berlin, 1999, xiv+602 pp. | DOI | MR | Zbl

[5] B. Øksendal, Stochastic differential equations. An introduction with applications, Universitext, 5th ed., Springer-Verlag, Berlin, 1998, xx+324 pp. | DOI | MR | Zbl

[6] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam–New York; Kodansha, Ltd., Tokyo, 1981, xiv+464 pp. | MR | MR | Zbl | Zbl

[7] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1991, xxiv+470 pp. | DOI | MR | Zbl

[8] B. Simon, Functional integration and quantum physics, Pure Appl. Math., 86, Academic Press, Inc., New York–London, 1979, ix+296 pp. | MR | Zbl

[9] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29:4 (1976), 389–461 | DOI | MR | Zbl

[10] S. R. S. Varadhan, “Large deviations”, Ann. Probab., 36:2 (2008), 397–419 | DOI | MR | Zbl

[11] S. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl

[12] V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239 | DOI | MR | Zbl

[13] V. R. Fatalov, “Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals”, Izv. Math., 74:1 (2010), 189–216 | DOI | DOI | MR | Zbl

[14] A. D. Wentzell, Limit theorems on large deviations for Markov stochastic processes, Math. Appl. (Soviet Ser.), 38, Kluwer Academic Publishers Group, Dordrecht, 1990, xvi+176 pp. | DOI | MR | MR | Zbl | Zbl

[15] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren Math. Wiss., 260, Springer-Verlag, New York, 1984, viii+326 pp. | DOI | MR | MR | Zbl | Zbl

[16] M. Freidlin, Markov processes and differential equations: asymptotic problems, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 1996, vi+153 pp. | DOI | MR | Zbl

[17] V. R. Fatalov, “The Laplace method for small deviations of Gaussian processes of Wiener type”, Sb. Math., 196:4 (2005), 595–620 | DOI | DOI | MR | Zbl

[18] V. R. Fatalov, “Occupation times and exact asymptotics of small deviations of Bessel processes for $L^p$-norms with $p>0$”, Izv. Math., 71:4 (2007), 721–752 | DOI | DOI | MR | Zbl

[19] V. R. Fatalov, “Occupation time and exact asymptotics of distributions of $L^p$-functionals of the Ornstein–Uhlenbeck processes, $p>0$”, Theory Probab. Appl., 53:1 (2009), 13–36 | DOI | DOI | MR | Zbl

[20] S. Albeverio, V. Fatalov, V. I. Piterbarg, “Asymptotic behavior of the sample mean of a function of the Wiener process and the MacDonald function”, J. Math. Sci. Univ. Tokyo, 16:1 (2009), 55–93 | MR | Zbl

[21] V. R. Fatalov, “Ergodic means for large values of $T$ and exact asymptotics of small deviations for a multi-dimensional Wiener process”, Izv. Math., 77:6 (2013), 1224–1259 | DOI | DOI | MR | Zbl

[22] M. Fukushima, M. Takeda, “A transformation of a symmetric Markov process and the Donsker–Varadhan theory”, Osaka J. Math., 21:2 (1984), 311–326 | MR | Zbl

[23] M. Fukushima, Dirichlet forms and Markov processes, North-Holland Math. Library, 23, North-Holland Publishing Co., Amsterdam–New York; Kodansha, Ltd., Tokyo, 1980, x+196 pp. | MR | Zbl

[24] Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz, I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl

[25] V. R. Fatalov, “Gaussian Ornstein–Uhlenbeck and Bogoliubov processes: asymptotics of small deviations for $L^p$-functionals, $0

\infty$”, Problems Inform. Transmission, 50:4 (2014), 371–389 | DOI | MR | Zbl

[26] Functional analysis, ed. S. G. Krejn, Wolters-Noordhoff Publishing, Groningen, 1972, xv+380 pp. | MR | MR | Zbl | Zbl

[27] F. W. J. Olver, Asymptotics and special functions, Comput. Sci. Appl. Math., Academic Press, New York–London, 1974, xvi+572 pp. | MR | MR | Zbl | Zbl

[28] V. R. Fatalov, “An exact asymptotics for small deviations of a nonstationary Ornstein–Uhlenbeck process in the $L^p$-norm, $p \geq 2$”, Moscow Univ. Math. Bull., 62:4 (2007), 125–130 | DOI | MR | Zbl

[29] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, v. 1, Mathematik und ihre Anwendungen in Physik und Technik. Reihe A, 18, Gewöhnliche Differentialgleichungen, 2. Aufl., Akademische Verlagsgesellschaft, Leipzig, 1943, xxvii+642 pp. | MR | Zbl | Zbl

[30] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[31] M. Reed, B. Simon, Methods of modern mathematical physics, v. I, IV, Academic Press, Inc., New York–London, 1972, 1978, xvii+325 pp., xv+396 pp. | MR | MR | MR | MR | Zbl | Zbl

[32] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 3, Addison-Wesley Series in Advanced Physics, Quantum mechanics: non-relativistic theory, Pergamon Press Ltd., London–Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1958, xii+515 pp. | MR | MR | Zbl

[33] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, R.I., 1975, xi+525 pp. | MR | MR | Zbl | Zbl

[34] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii, Nauka, M., 1979, 400 pp. | MR | Zbl

[35] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl

[36] S. Mizohata, Henbidun hôteisiki ron [The theory of partial differential equations], Contemp. Math., 9, Iwanami Shoten, Tokyo, 1965, viii+462 pp. | MR | Zbl

[37] M. V. Fedoryuk, Asymptotic analysis. Linear ordinary differential equations, Springer-Verlag, Berlin, 1993, viii+363 pp. | DOI | MR | MR | Zbl | Zbl

[38] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987, 544 pp. | MR | Zbl

[39] M. Kats, Neskolko veroyatnostnykh zadach fiziki i matematiki, per. s polsk., Nauka, M., 1967, 176 pp.

[40] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986, 800 pp. | MR | Zbl

[41] M. Kac, “On the average of a certain Wiener functional and a related limit theorem in calculus of probability”, Trans. Amer. Math. Soc., 59:3 (1946), 401–414 | DOI | MR | Zbl

[42] M. Kac, “On distributions of certain Wiener functionals”, Trans. Amer. Math. Soc., 65:1 (1949), 1–13 | DOI | MR | Zbl

[43] Hui Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., 463, Springer-Verlag, Berlin–New York, 1975, vi+224 pp. | DOI | MR | Zbl

[44] Ya. Yu. Nikitin, E. Orsingher, “Exact small deviation asymptotics for the Slepian and Watson processes in the Hilbert norm”, J. Math. Sci. (N. Y.), 137:1 (2006), 4555–4560 | DOI | MR | Zbl

[45] L. Beghin, Ya. Nikitin, E. Orsinger, “Exact small ball constants for some Gaussian processes under $L^2$-norm”, Veroyatnost i statistika. 6, Zap. nauch. sem. POMI, 298, POMI, SPb., 2003, 5–21 ; J. Math. Sci. (N. Y.), 128:1 (2005), 2493–2502 | MR | Zbl | DOI

[46] I. I. Gihman, A.V̇. Skorohod, The theory of stochastic processes, v. III, Grundlehren Math. Wiss., 232, Springer-Verlag, Berlin–New York, 1979, iii+387 pp. | MR | MR | Zbl | Zbl

[47] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Aide-mémoire de théorie des probabilités et de statistique mathématique, Moscou, Mir, 1983, 581 pp. | MR | MR | Zbl | Zbl

[48] A. A. Novikov, “Small deviations of Gaussian process”, Math. Notes, 29:2 (1981), 150–155 | DOI | MR | Zbl