On the basis property of the system of eigenfunctions and associated functions
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 351-376

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a one-dimensional Dirac system on a finite interval. The potential (a $2\times 2$ matrix) is assumed to be complex-valued and integrable. The boundary conditions are assumed to be regular in the sense of Birkhoff. It is known that such an operator has a discrete spectrum and the system $\{\mathbf{y}_n\}_1^\infty$ of its eigenfunctions and associated functions is a Riesz basis (possibly with brackets) in $L_2\oplus L_2$. Our results concern the basis property of this system in the spaces $L_\mu\oplus L_\mu$ for $\mu\ne2$, the Sobolev spaces ${W_2^\theta\oplus W_2^\theta}$ for $\theta\in[0,1]$, and the Besov spaces $B^\theta_{p,q}\oplus B^\theta_{p,q}$.
Keywords: Dirac operator, eigenfunctions and associated functions, conditional basis, Riesz basis.
@article{IM2_2018_82_2_a4,
     author = {A. M. Savchuk},
     title = {On the basis property of the system of eigenfunctions and associated functions},
     journal = {Izvestiya. Mathematics },
     pages = {351--376},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a4/}
}
TY  - JOUR
AU  - A. M. Savchuk
TI  - On the basis property of the system of eigenfunctions and associated functions
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 351
EP  - 376
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a4/
LA  - en
ID  - IM2_2018_82_2_a4
ER  - 
%0 Journal Article
%A A. M. Savchuk
%T On the basis property of the system of eigenfunctions and associated functions
%J Izvestiya. Mathematics 
%D 2018
%P 351-376
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a4/
%G en
%F IM2_2018_82_2_a4
A. M. Savchuk. On the basis property of the system of eigenfunctions and associated functions. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 351-376. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a4/