On the basis property of the system of eigenfunctions and associated functions
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 351-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a one-dimensional Dirac system on a finite interval. The potential (a $2\times 2$ matrix) is assumed to be complex-valued and integrable. The boundary conditions are assumed to be regular in the sense of Birkhoff. It is known that such an operator has a discrete spectrum and the system $\{\mathbf{y}_n\}_1^\infty$ of its eigenfunctions and associated functions is a Riesz basis (possibly with brackets) in $L_2\oplus L_2$. Our results concern the basis property of this system in the spaces $L_\mu\oplus L_\mu$ for $\mu\ne2$, the Sobolev spaces ${W_2^\theta\oplus W_2^\theta}$ for $\theta\in[0,1]$, and the Besov spaces $B^\theta_{p,q}\oplus B^\theta_{p,q}$.
Keywords: Dirac operator, eigenfunctions and associated functions, conditional basis, Riesz basis.
@article{IM2_2018_82_2_a4,
     author = {A. M. Savchuk},
     title = {On the basis property of the system of eigenfunctions and associated functions},
     journal = {Izvestiya. Mathematics },
     pages = {351--376},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a4/}
}
TY  - JOUR
AU  - A. M. Savchuk
TI  - On the basis property of the system of eigenfunctions and associated functions
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 351
EP  - 376
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a4/
LA  - en
ID  - IM2_2018_82_2_a4
ER  - 
%0 Journal Article
%A A. M. Savchuk
%T On the basis property of the system of eigenfunctions and associated functions
%J Izvestiya. Mathematics 
%D 2018
%P 351-376
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a4/
%G en
%F IM2_2018_82_2_a4
A. M. Savchuk. On the basis property of the system of eigenfunctions and associated functions. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 351-376. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a4/

[1] P. Djakov, B. Mityagin, “Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, J. Approx. Theory, 164:7 (2012), 879–927 | DOI | MR | Zbl

[2] P. Djakov, B. Mityagin, “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl

[3] A. M. Savchuk, A. A. Shkalikov, “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[4] A. M. Savchuk, I. V. Sadovnichaya, “Bazisnost Rissa so skobkami dlya sistemy Diraka s summiruemym potentsialom”, Trudy Sedmoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam, Chast 1 (Moskva, 22–29 avgusta, 2014), SMFN, 58, RUDN, M., 2015, 128–152 | MR

[5] I. V. Sadovnichaya, “Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces”, Proc. Steklov Inst. Math., 293 (2016), 288–316 | DOI | DOI | MR | Zbl

[6] M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, P. E. Sobolevskii, Integral operators in spaces of summable functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leiden, 1976, xv+520 pp. | MR | MR | Zbl | Zbl

[7] A. A. Shkalikov, “Property of the eigenvectors of quadratic operator pencils of being a basis”, Math. Notes, 30:3 (1981), 676–684 | DOI | MR | Zbl

[8] H. E. Benzinger, “The $L^p$ behavior of eigenfunction expansion”, Trans. Amer. Math. Soc., 174 (1972) (1973), 333–344 | DOI | MR | Zbl

[9] A. M. Gomilko, G. V. Radzievskii, “Equivalence in $L_p[0,1]$ of the system $e^{i2\pi kx}$ $(k=0,\pm1,\dots)$ and the system of the eigenfunctions of an ordinary functional-differential operator”, Math. Notes, 49:1 (1991), 34–40 | DOI | MR | Zbl

[10] Kh. R. Mamedov, “On the basis property in $L_p(0,1)$ of the root functions of a class non self adjoint Sturm–Liouville operators”, Eur. J. Pure Appl. Math., 3:5 (2010), 831–838 | MR | Zbl

[11] H. Menken, Kh. R. Mamedov, “Basis property in $L_p(0,1)$ of the root functions corresponding to a boundary-value problem”, J. Appl. Funct. Anal., 5:4 (2010), 351–356 | MR | Zbl

[12] V. M. Kurbanov, “Analog of the Riesz theorem and the basis property in $L_p$ of a system of root functions of a differential operator. I”, Differ. Equ., 49:1 (2013), 7–19 | DOI | MR | Zbl

[13] P. Djakov, B. Mityagin, “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl

[14] B. Mityagin, “Spectral expansions of one-dimensional periodic Dirac operators”, Dyn. Partial Differ. Equ., 1:2 (2004), 125–191 | DOI | MR | Zbl

[15] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005, 504 pp.

[16] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | MR | MR | Zbl

[17] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[18] İ. Arslan, “Characterization of the potential smoothness of one-dimensional Dirac operator subject to general boundary conditions and its Riesz basis property”, J. Math. Anal. Appl., 447:1 (2017), 84–108 ; arXiv: 1602.01290 | DOI | MR | Zbl

[19] M. Sh. Burlutskaya, V. V. Kornev, A. P. Khromov, “Sistema Diraka s nedifferentsiruemym potentsialom i periodicheskimi kraevymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 52:9 (2012), 1621–1632 | Zbl

[20] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR | MR | Zbl | Zbl

[21] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl

[22] H. Triebel, Theory of function spaces, Math. Anwendungen Phys. Tech., 38, Akademische Verlagsgesellschaft Geest Portig K.-G., Leipzig, 1983, 284 pp. | DOI | MR | MR | Zbl | Zbl

[23] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, R.I., 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[24] I. V. Sadovnichaya, Voprosy ravnoskhodimosti dlya operatorov Shturma–Liuvillya i Diraka, Diss. ... dokt. fiz.-matem. nauk, MGU, M., 2016, 204 pp.