Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_2_a3, author = {K. B. Sabitov and R. M. Safina}, title = {The first boundary-value problem for an equation of mixed type with a~singular coefficient}, journal = {Izvestiya. Mathematics }, pages = {318--350}, publisher = {mathdoc}, volume = {82}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a3/} }
TY - JOUR AU - K. B. Sabitov AU - R. M. Safina TI - The first boundary-value problem for an equation of mixed type with a~singular coefficient JO - Izvestiya. Mathematics PY - 2018 SP - 318 EP - 350 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a3/ LA - en ID - IM2_2018_82_2_a3 ER -
K. B. Sabitov; R. M. Safina. The first boundary-value problem for an equation of mixed type with a~singular coefficient. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 318-350. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a3/
[1] A. V. Bitsadze, “K probleme uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Dokl. AN SSSR, 110:6 (1956), 901–902 | MR | Zbl
[2] S. P. Pulkin, “K voprosu o postanovke zadachi Trikomi v prostranstve”, Uch. zap. Kuibyshev. gos. ped. in-ta im. V. V. Kuibysheva, 1956, no. 14, 63–78
[3] S. P. Pulkin, Issledovaniya po uravneniyam smeshannogo tipa, Diss. ... dokt. fiz.-matem. nauk, KGU, Kazan, 1958
[4] S. P. Pulkin, “Nekotorye kraevye zadachi dlya uravnenii $u_{xx}\pm u_{yy}+\frac{p}{x}u_{x}=0$”, Uch. zap. Kuibyshev. gos. ped. in-ta im. V. V. Kuibysheva, 1958, no. 21, 3–55
[5] S. P. Pulkin, “O edinstvennosti resheniya singulyarnoi zadachi Gellersteda”, Izv. vuzov. Matem., 1960, no. 6, 214–225 | MR | Zbl
[6] V. F. Volkodavov, L. M. Nevostruev, “O printsipe lokalnogo ekstremuma dlya uravneniya Eilera–Puassona–Darbu”, Volzh. matem. sb. (Kuibyshev), 1966, no. 5, 70–78 | MR | Zbl
[7] V. F. Volkodavov, Printsip lokalnogo ekstremuma i ego primenenie k resheniyu kraevykh zadach dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Diss. ... dokt. fiz.-matem. nauk, KGU, Kazan, 1969
[8] K. B. Sabitov, “Maximum principle for an equation of mixed type”, Differ. Equ., 24:11 (1989), 1322–1329 | MR | Zbl
[9] K. B. Sabitov, K teorii uravnenii smeshannogo tipa, Fizmatlit, M., 2014, 304 pp.
[10] K. B. Sabitov, R. R. Il'yasov, “Solution of the Tricomi problem for an equation of mixed type with a singular coefficient by means of the spectral method”, Russian Math. (Iz. VUZ), 48:2 (2004), 61–68 | MR | Zbl
[11] F. I. Frankl, Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973, 711 pp. | MR
[12] A. V. Bitsadze, “Nekorrektnost zadachi Dirikhle dlya uravnenii smeshannogo tipa v smeshannykh oblastyakh”, Dokl. AN SSSR, 122:2 (1958), 167–170 | MR | Zbl
[13] A. V. Bitsadze, Equations of the mixed type, A Pergamon Press Book, The Macmillan Co., New York, 1964, xiii+160 pp. | MR | Zbl | Zbl
[14] B. V. Shabat, “Primery resheniya zadachi Dirikhle dlya uravnenii smeshannogo tipa”, Dokl. AN SSSR, 112:3 (1957), 386–389 | MR | Zbl
[15] I. N. Vakhaniya, “Ob odnoi osoboi zadache dlya uravneniya smeshannogo tipa”, Tr. AN Gruz. SSR, 3 (1963), 69–80 | MR | Zbl
[16] J. R. Cannon, “A Dirichlet problem for an equation of mixed type with a discontinuous coefficient”, Ann. Mat. Pura Appl. (4), 61 (1963), 371–377 | DOI | MR | Zbl
[17] A. M. Nakhushev, “A criterion for the uniqueness of the solution of Dirichlet's problem for an equation of mixed type in a cylindrical region”, Differ. Equ., 6 (1970) (1972), 150–151 | MR | Zbl
[18] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006, 287 pp. | Zbl
[19] M. M. Hačev, “Dirichlet's problem for Tricomi's equation in a rectangle”, Differ. Equ., 11 (1975), 116–124 | MR | Zbl
[20] M. M. Hačev, “Dirichlet's problem for a generalized Lavrent'ev–Bitsadze equation in a rectangular region”, Differ. Equ., 14 (1978), 96–99 | MR | Zbl
[21] R. I. Sokhadze, “A first boundary-value problem for an equation of mixed type in a rectangle”, Differ. Equ., 19 (1983), 108–113 | MR | Zbl
[22] R. I. Sokhadze, “First boundary-value problem for an equation of mixed type with weighted compatibility conditions along a parabolic-degeneration line”, Differ. Equ., 17 (1981), 105–109 | MR | Zbl
[23] A. P. Soldatov, “Problems of Dirichlet type for the Lavrent'ev–Bitsadze equation. I. Uniqueness theorems”, Russian Acad. Sci. Dokl. Math., 48:2 (1994), 410–414 | MR | Zbl
[24] A. P. Soldatov, “Problems of Dirichlet type for the Lavrent'ev–Bitsadze equation. II. Existence theorems”, Russian Acad. Sci. Dokl. Math., 48:3 (1994), 433–437 | MR | Zbl
[25] K. B. Sabitov, “Dirichlet problem for mixed-type equations in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196 | DOI | MR | Zbl
[26] K. B. Sabitov, “Dirichlet problem for equations of mixed type in a half-strip”, Differ. Equ., 43:10 (2007), 1453–1458 | DOI | MR | Zbl
[27] V. I. Arnol'd, “Small denominators. I. Mappings of the circumference onto itself”, Amer. Math. Soc. Transl. Ser. 2, 46, Amer. Math. Soc., Providence, R.I., 1965, 213–284 | DOI | MR | Zbl
[28] V. I. Arnol'd, “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surveys, 18:6 (1963), 85–191 | DOI | MR | Zbl
[29] I. S. Lomov, “Small denominators in the analytic theory of degenerate differential equations”, Differ. Equ., 29:12 (1993), 1811–1820 | MR | Zbl
[30] S. A. Lomov, I. S. Lomov, Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Mosk. un-ta, M, 2011, 456 pp.
[31] K. B. Sabitov, A. Kh. Suleimanova, “The Dirichlet problem for a mixed-type equation of the second kind in a rectangular domain”, Russian Math. (Iz. VUZ), 51:4 (2007), 42–50 | DOI | MR | Zbl
[32] K. B. Sabitov, A. Kh. Suleimanova, “The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain”, Russian Math. (Iz. VUZ), 53:11 (2009), 37–45 | DOI | MR | Zbl
[33] R. S. Khairullin, “On the Dirichlet problem for a mixed-type equation of the second kind with strong degeneration”, Differ. Equ., 49:4 (2013), 510–516 | DOI | MR | Zbl
[34] K. B. Sabitov, E. V. Vagapova, “Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain”, Differ. Equ., 49:1 (2013), 68–78 | DOI | MR | Zbl
[35] R. M. Safina, “Zadacha Dirikhle dlya uravneniya Pulkina v pryamougolnoi oblasti”, Vestn. SamGU. Estestvennonauchn. ser., 2014, no. 10(121), 91–101 | Zbl
[36] R. M. Safina, “Zadacha Keldysha dlya uravneniya Pulkina v pryamougolnoi oblasti”, Vestn. SamGU. Estestvennonauchn. ser., 2015, no. 3(125), 53–64
[37] M. V. Keldysh, “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183 | MR
[38] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl
[39] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl
[40] F. W. J. Olver, Introduction to asymptotics and special functions, Academic Press, New York, 1974, xii+297 pp. | MR | Zbl
[41] K. B. Sabitov, E. P. Melisheva, “The Dirichlet problem for a loaded mixed-type equation in a rectangular domain”, Russian Math. (Iz. VUZ), 57:7 (2013), 53–65 | DOI | MR | Zbl
[42] A. B. Shidlovskii, Diofantovy priblizheniya i transtsendentnye chisla, Izd-vo Mosk. un-ta, M., 1982, 264 pp. | MR | Zbl
[43] K. B. Sabitov, E. M. Safin, “The inverse problem for an equation of mixed parabolic-hyperbolic type”, Math. Notes, 87:6 (2010), 880–889 | DOI | DOI | MR | Zbl
[44] A. Ya. Khinchin, Continued fractions, Univ. of Chicago Press, Chicago, Ill.–London, 1964, xi+95 pp. | MR | MR | Zbl