The first boundary-value problem for an equation of mixed type with a~singular coefficient
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 318-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the first boundary-value problem in a rectangle for an equation of mixed type with a singular coefficient. We establish a criterion for the uniqueness of solutions and construct the solution as the sum of a series in the system of eigenfunctions of a one-dimensional eigenvalue problem. Justifying the uniform convergence of the series encounters a problem of small denominators. To deal with this we obtain bounds for the separation of the small denominators from zero along with the corresponding asymptotic results. These bounds enable us to justify the convergence of the series in the class of regular solutions of the equation.
Keywords: equation of mixed type, Dirichlet problem, Keldysh problem, survey, uniqueness, orthogonal series, small denominators, bounds, stability.
Mots-clés : singular coefficient, existence
@article{IM2_2018_82_2_a3,
     author = {K. B. Sabitov and R. M. Safina},
     title = {The first boundary-value problem for an equation of mixed type with a~singular coefficient},
     journal = {Izvestiya. Mathematics },
     pages = {318--350},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a3/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - R. M. Safina
TI  - The first boundary-value problem for an equation of mixed type with a~singular coefficient
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 318
EP  - 350
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a3/
LA  - en
ID  - IM2_2018_82_2_a3
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A R. M. Safina
%T The first boundary-value problem for an equation of mixed type with a~singular coefficient
%J Izvestiya. Mathematics 
%D 2018
%P 318-350
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a3/
%G en
%F IM2_2018_82_2_a3
K. B. Sabitov; R. M. Safina. The first boundary-value problem for an equation of mixed type with a~singular coefficient. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 318-350. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a3/

[1] A. V. Bitsadze, “K probleme uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Dokl. AN SSSR, 110:6 (1956), 901–902 | MR | Zbl

[2] S. P. Pulkin, “K voprosu o postanovke zadachi Trikomi v prostranstve”, Uch. zap. Kuibyshev. gos. ped. in-ta im. V. V. Kuibysheva, 1956, no. 14, 63–78

[3] S. P. Pulkin, Issledovaniya po uravneniyam smeshannogo tipa, Diss. ... dokt. fiz.-matem. nauk, KGU, Kazan, 1958

[4] S. P. Pulkin, “Nekotorye kraevye zadachi dlya uravnenii $u_{xx}\pm u_{yy}+\frac{p}{x}u_{x}=0$”, Uch. zap. Kuibyshev. gos. ped. in-ta im. V. V. Kuibysheva, 1958, no. 21, 3–55

[5] S. P. Pulkin, “O edinstvennosti resheniya singulyarnoi zadachi Gellersteda”, Izv. vuzov. Matem., 1960, no. 6, 214–225 | MR | Zbl

[6] V. F. Volkodavov, L. M. Nevostruev, “O printsipe lokalnogo ekstremuma dlya uravneniya Eilera–Puassona–Darbu”, Volzh. matem. sb. (Kuibyshev), 1966, no. 5, 70–78 | MR | Zbl

[7] V. F. Volkodavov, Printsip lokalnogo ekstremuma i ego primenenie k resheniyu kraevykh zadach dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Diss. ... dokt. fiz.-matem. nauk, KGU, Kazan, 1969

[8] K. B. Sabitov, “Maximum principle for an equation of mixed type”, Differ. Equ., 24:11 (1989), 1322–1329 | MR | Zbl

[9] K. B. Sabitov, K teorii uravnenii smeshannogo tipa, Fizmatlit, M., 2014, 304 pp.

[10] K. B. Sabitov, R. R. Il'yasov, “Solution of the Tricomi problem for an equation of mixed type with a singular coefficient by means of the spectral method”, Russian Math. (Iz. VUZ), 48:2 (2004), 61–68 | MR | Zbl

[11] F. I. Frankl, Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973, 711 pp. | MR

[12] A. V. Bitsadze, “Nekorrektnost zadachi Dirikhle dlya uravnenii smeshannogo tipa v smeshannykh oblastyakh”, Dokl. AN SSSR, 122:2 (1958), 167–170 | MR | Zbl

[13] A. V. Bitsadze, Equations of the mixed type, A Pergamon Press Book, The Macmillan Co., New York, 1964, xiii+160 pp. | MR | Zbl | Zbl

[14] B. V. Shabat, “Primery resheniya zadachi Dirikhle dlya uravnenii smeshannogo tipa”, Dokl. AN SSSR, 112:3 (1957), 386–389 | MR | Zbl

[15] I. N. Vakhaniya, “Ob odnoi osoboi zadache dlya uravneniya smeshannogo tipa”, Tr. AN Gruz. SSR, 3 (1963), 69–80 | MR | Zbl

[16] J. R. Cannon, “A Dirichlet problem for an equation of mixed type with a discontinuous coefficient”, Ann. Mat. Pura Appl. (4), 61 (1963), 371–377 | DOI | MR | Zbl

[17] A. M. Nakhushev, “A criterion for the uniqueness of the solution of Dirichlet's problem for an equation of mixed type in a cylindrical region”, Differ. Equ., 6 (1970) (1972), 150–151 | MR | Zbl

[18] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006, 287 pp. | Zbl

[19] M. M. Hačev, “Dirichlet's problem for Tricomi's equation in a rectangle”, Differ. Equ., 11 (1975), 116–124 | MR | Zbl

[20] M. M. Hačev, “Dirichlet's problem for a generalized Lavrent'ev–Bitsadze equation in a rectangular region”, Differ. Equ., 14 (1978), 96–99 | MR | Zbl

[21] R. I. Sokhadze, “A first boundary-value problem for an equation of mixed type in a rectangle”, Differ. Equ., 19 (1983), 108–113 | MR | Zbl

[22] R. I. Sokhadze, “First boundary-value problem for an equation of mixed type with weighted compatibility conditions along a parabolic-degeneration line”, Differ. Equ., 17 (1981), 105–109 | MR | Zbl

[23] A. P. Soldatov, “Problems of Dirichlet type for the Lavrent'ev–Bitsadze equation. I. Uniqueness theorems”, Russian Acad. Sci. Dokl. Math., 48:2 (1994), 410–414 | MR | Zbl

[24] A. P. Soldatov, “Problems of Dirichlet type for the Lavrent'ev–Bitsadze equation. II. Existence theorems”, Russian Acad. Sci. Dokl. Math., 48:3 (1994), 433–437 | MR | Zbl

[25] K. B. Sabitov, “Dirichlet problem for mixed-type equations in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196 | DOI | MR | Zbl

[26] K. B. Sabitov, “Dirichlet problem for equations of mixed type in a half-strip”, Differ. Equ., 43:10 (2007), 1453–1458 | DOI | MR | Zbl

[27] V. I. Arnol'd, “Small denominators. I. Mappings of the circumference onto itself”, Amer. Math. Soc. Transl. Ser. 2, 46, Amer. Math. Soc., Providence, R.I., 1965, 213–284 | DOI | MR | Zbl

[28] V. I. Arnol'd, “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surveys, 18:6 (1963), 85–191 | DOI | MR | Zbl

[29] I. S. Lomov, “Small denominators in the analytic theory of degenerate differential equations”, Differ. Equ., 29:12 (1993), 1811–1820 | MR | Zbl

[30] S. A. Lomov, I. S. Lomov, Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Mosk. un-ta, M, 2011, 456 pp.

[31] K. B. Sabitov, A. Kh. Suleimanova, “The Dirichlet problem for a mixed-type equation of the second kind in a rectangular domain”, Russian Math. (Iz. VUZ), 51:4 (2007), 42–50 | DOI | MR | Zbl

[32] K. B. Sabitov, A. Kh. Suleimanova, “The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain”, Russian Math. (Iz. VUZ), 53:11 (2009), 37–45 | DOI | MR | Zbl

[33] R. S. Khairullin, “On the Dirichlet problem for a mixed-type equation of the second kind with strong degeneration”, Differ. Equ., 49:4 (2013), 510–516 | DOI | MR | Zbl

[34] K. B. Sabitov, E. V. Vagapova, “Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain”, Differ. Equ., 49:1 (2013), 68–78 | DOI | MR | Zbl

[35] R. M. Safina, “Zadacha Dirikhle dlya uravneniya Pulkina v pryamougolnoi oblasti”, Vestn. SamGU. Estestvennonauchn. ser., 2014, no. 10(121), 91–101 | Zbl

[36] R. M. Safina, “Zadacha Keldysha dlya uravneniya Pulkina v pryamougolnoi oblasti”, Vestn. SamGU. Estestvennonauchn. ser., 2015, no. 3(125), 53–64

[37] M. V. Keldysh, “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183 | MR

[38] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl

[39] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl

[40] F. W. J. Olver, Introduction to asymptotics and special functions, Academic Press, New York, 1974, xii+297 pp. | MR | Zbl

[41] K. B. Sabitov, E. P. Melisheva, “The Dirichlet problem for a loaded mixed-type equation in a rectangular domain”, Russian Math. (Iz. VUZ), 57:7 (2013), 53–65 | DOI | MR | Zbl

[42] A. B. Shidlovskii, Diofantovy priblizheniya i transtsendentnye chisla, Izd-vo Mosk. un-ta, M., 1982, 264 pp. | MR | Zbl

[43] K. B. Sabitov, E. M. Safin, “The inverse problem for an equation of mixed parabolic-hyperbolic type”, Math. Notes, 87:6 (2010), 880–889 | DOI | DOI | MR | Zbl

[44] A. Ya. Khinchin, Continued fractions, Univ. of Chicago Press, Chicago, Ill.–London, 1964, xi+95 pp. | MR | MR | Zbl