Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_2_a2, author = {M. O. Korpusov and D. V. Lukyanenko and A. A. Panin and E. V. Yushkov}, title = {Blow-up of solutions of a~full non-linear equation of ion-sound waves}, journal = {Izvestiya. Mathematics }, pages = {283--317}, publisher = {mathdoc}, volume = {82}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a2/} }
TY - JOUR AU - M. O. Korpusov AU - D. V. Lukyanenko AU - A. A. Panin AU - E. V. Yushkov TI - Blow-up of solutions of a~full non-linear equation of ion-sound waves JO - Izvestiya. Mathematics PY - 2018 SP - 283 EP - 317 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a2/ LA - en ID - IM2_2018_82_2_a2 ER -
%0 Journal Article %A M. O. Korpusov %A D. V. Lukyanenko %A A. A. Panin %A E. V. Yushkov %T Blow-up of solutions of a~full non-linear equation of ion-sound waves %J Izvestiya. Mathematics %D 2018 %P 283-317 %V 82 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a2/ %G en %F IM2_2018_82_2_a2
M. O. Korpusov; D. V. Lukyanenko; A. A. Panin; E. V. Yushkov. Blow-up of solutions of a~full non-linear equation of ion-sound waves. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 283-317. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a2/
[1] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998, 448 pp. | Zbl
[2] F. Kako, N. Yajima, “Interaction of ion-acoustic solitons in two-dimensional space”, J. Phys. Soc. Japan, 49:5 (1980), 2063–2071 | DOI | MR | Zbl
[3] E. Infeld, G. Rowlands, Nonlinear waves, solitons and chaos, 2nd ed., Cambridge Univ. Press, Cambridge, 2000, xiv+391 pp. | DOI | MR | Zbl
[4] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl
[5] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathscr{F}(u)$”, Arch. Rational. Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl
[6] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr{F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl
[7] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl
[8] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya Sobolevskogo tipa, Fizmatlit, M., 2007, 734 pp. | Zbl
[9] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, De Gruyter Exp. Math., 19, Walter de Gruyter Co., Berlin, 1995, xxii+535 pp. | DOI | MR | MR | Zbl | Zbl
[10] V. A. Galaktionov, S. I. Pohozaev, “Third-order nonlinear dispersive equations: shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl
[11] E. A. Al'shina, N. N. Kalitkin, P. V. Koryakin, “Diagnostics of singularities of exact solutions in computations with error control”, Comput. Math. Math. Phys., 45:10 (2005), 1769–1779 | MR | Zbl
[12] A. B. Al'shin, E. A. Al'shina, “Numerical diagnosis of blow-up of solutions of pseudoparabolic equations”, J. Math. Sci. (N. Y.), 148:1 (2008), 143–162 | DOI | MR | Zbl
[13] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468 | DOI | MR | Zbl
[14] M. O. Korpusov, “The finite-time blowup of the solution of an initial boundary-value problem for the nonlinear equation of ion sound waves”, Theoret. and Math. Phys., 187:3 (2016), 835–841 | DOI | DOI | MR | Zbl
[15] M. O. Korpusov, “Blow-up of ion acoustic waves in a plasma”, Sb. Math., 202:1 (2011), 35–60 | DOI | DOI | MR | Zbl
[16] M. O. Korpusov, Razrushenie v neklassicheskikh volnovykh uravneniyakh, URSS, M., 2010, 240 pp.
[17] M. O. Korpusov, A. G. Sveshnikov, Nelineinyi funktsionalnyi analiz i matematicheskoe modelirovanie v fizike. Metody issledovaniya nelineinykh operatorov, Krasand, M., 2011, 480 pp.
[18] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, 2-e ispr., dop. izd., NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011, 728 pp.
[19] E. Hairer, G. Wanner, Solving of ordinary differential equations, v. II, Springer Ser. Comput. Math., 14, Stiff and differential-algebraic problems, 2nd ed., Springer-Verlag, Berlin, 1996, xvi+614 pp. | DOI | MR | Zbl
[20] N. N. Kalitkin, “Chislennye metody resheniya zhestkikh sistem”, Matem. modelirovanie, 7:5 (1995), 8–11 | Zbl
[21] H. H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl
[22] A. B. Al'shin, E. A. Al'shina, N. N. Kalitkin, A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems”, Comput. Math. Math. Phys., 46:8 (2006), 1320–1340 | DOI | MR
[23] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.