Blow-up of solutions of a~full non-linear equation of ion-sound waves
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 283-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a series of initial-boundary value problems for the equation of ion-sound waves in a plasma. For each of them we prove the local (in time) solubility and perform an analytical-numerical study of the blow-up of solutions. We use the method of test functions to obtain sufficient conditions for finite-time blow-up and an upper bound for the blow-up time. In concrete numerical examples we improve these bounds numerically using the mesh refinement method. Thus the analytical and numerical parts of the investigation complement each other. The time interval for the numerical modelling is chosen in accordance with the analytically obtained upper bound for the blow-up time. In return, numerical calculations specify the moment and pattern of this blow-up.
Keywords: blow-up of a solution, non-linear initial-boundary value problem, exponential non-linearity, Richardson extrapolation.
Mots-clés : Sobolev-type equations
@article{IM2_2018_82_2_a2,
     author = {M. O. Korpusov and D. V. Lukyanenko and A. A. Panin and E. V. Yushkov},
     title = {Blow-up of solutions of a~full non-linear equation of ion-sound waves},
     journal = {Izvestiya. Mathematics },
     pages = {283--317},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a2/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - D. V. Lukyanenko
AU  - A. A. Panin
AU  - E. V. Yushkov
TI  - Blow-up of solutions of a~full non-linear equation of ion-sound waves
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 283
EP  - 317
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a2/
LA  - en
ID  - IM2_2018_82_2_a2
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A D. V. Lukyanenko
%A A. A. Panin
%A E. V. Yushkov
%T Blow-up of solutions of a~full non-linear equation of ion-sound waves
%J Izvestiya. Mathematics 
%D 2018
%P 283-317
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a2/
%G en
%F IM2_2018_82_2_a2
M. O. Korpusov; D. V. Lukyanenko; A. A. Panin; E. V. Yushkov. Blow-up of solutions of a~full non-linear equation of ion-sound waves. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 283-317. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a2/

[1] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998, 448 pp. | Zbl

[2] F. Kako, N. Yajima, “Interaction of ion-acoustic solitons in two-dimensional space”, J. Phys. Soc. Japan, 49:5 (1980), 2063–2071 | DOI | MR | Zbl

[3] E. Infeld, G. Rowlands, Nonlinear waves, solitons and chaos, 2nd ed., Cambridge Univ. Press, Cambridge, 2000, xiv+391 pp. | DOI | MR | Zbl

[4] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[5] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathscr{F}(u)$”, Arch. Rational. Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[6] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr{F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[7] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl

[8] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya Sobolevskogo tipa, Fizmatlit, M., 2007, 734 pp. | Zbl

[9] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, De Gruyter Exp. Math., 19, Walter de Gruyter Co., Berlin, 1995, xxii+535 pp. | DOI | MR | MR | Zbl | Zbl

[10] V. A. Galaktionov, S. I. Pohozaev, “Third-order nonlinear dispersive equations: shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl

[11] E. A. Al'shina, N. N. Kalitkin, P. V. Koryakin, “Diagnostics of singularities of exact solutions in computations with error control”, Comput. Math. Math. Phys., 45:10 (2005), 1769–1779 | MR | Zbl

[12] A. B. Al'shin, E. A. Al'shina, “Numerical diagnosis of blow-up of solutions of pseudoparabolic equations”, J. Math. Sci. (N. Y.), 148:1 (2008), 143–162 | DOI | MR | Zbl

[13] M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468 | DOI | MR | Zbl

[14] M. O. Korpusov, “The finite-time blowup of the solution of an initial boundary-value problem for the nonlinear equation of ion sound waves”, Theoret. and Math. Phys., 187:3 (2016), 835–841 | DOI | DOI | MR | Zbl

[15] M. O. Korpusov, “Blow-up of ion acoustic waves in a plasma”, Sb. Math., 202:1 (2011), 35–60 | DOI | DOI | MR | Zbl

[16] M. O. Korpusov, Razrushenie v neklassicheskikh volnovykh uravneniyakh, URSS, M., 2010, 240 pp.

[17] M. O. Korpusov, A. G. Sveshnikov, Nelineinyi funktsionalnyi analiz i matematicheskoe modelirovanie v fizike. Metody issledovaniya nelineinykh operatorov, Krasand, M., 2011, 480 pp.

[18] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, 2-e ispr., dop. izd., NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011, 728 pp.

[19] E. Hairer, G. Wanner, Solving of ordinary differential equations, v. II, Springer Ser. Comput. Math., 14, Stiff and differential-algebraic problems, 2nd ed., Springer-Verlag, Berlin, 1996, xvi+614 pp. | DOI | MR | Zbl

[20] N. N. Kalitkin, “Chislennye metody resheniya zhestkikh sistem”, Matem. modelirovanie, 7:5 (1995), 8–11 | Zbl

[21] H. H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[22] A. B. Al'shin, E. A. Al'shina, N. N. Kalitkin, A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems”, Comput. Math. Math. Phys., 46:8 (2006), 1320–1340 | DOI | MR

[23] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.