On the factorization of matrix and operator Wiener--Hopf integral equations
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 273-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\widehat{K}$ be a Wiener–Hopf operator, $\widehat{K}f(x)=\int_0^{\infty}K(x-t)f(t)\,dt$, $x\geqslant 0$, and let $\widehat{K}^*$ be the adjoint operator, $(f\widehat{K}^*)(t)=\int_0^{\infty}f(x)K(x-t)\,dx$, $t\geqslant 0$, where $K(x)$ belongs to the Banach space $L_1 (G,(-\infty,\infty))$ of Bochner strongly integrable functions with values in a Banach algebra $G$. We consider the canonical factorization problem $I-\widehat{K}=(I-\widehat{V}_-)(I-\widehat{V}_+)$, where $I$ is the identity operator and $\widehat{V}_-$ (resp. $\widehat{V}_+ $) is a left (resp. right) triangular convolution operator such that the operators $I-\widehat{V}_{\pm}$ are invertible in the spaces $L_{p} (G,(0,\infty))$, $1\leqslant p\leqslant \infty$. We put forward a semi-inverse factorization method and prove that the canonical factorization exists if and only if the operators $I-\widehat{K}$ and $I-\widehat{K}^*$ are invertible in $L_1 (G,(0,\infty))$.
Keywords: operator Wiener–Hopf integral equation, strongly integrable functions, semi-inverse Volterra factorization method.
@article{IM2_2018_82_2_a1,
     author = {N. B. Engibaryan},
     title = {On the factorization of matrix and operator {Wiener--Hopf} integral equations},
     journal = {Izvestiya. Mathematics },
     pages = {273--282},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - On the factorization of matrix and operator Wiener--Hopf integral equations
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 273
EP  - 282
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/
LA  - en
ID  - IM2_2018_82_2_a1
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T On the factorization of matrix and operator Wiener--Hopf integral equations
%J Izvestiya. Mathematics 
%D 2018
%P 273-282
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/
%G en
%F IM2_2018_82_2_a1
N. B. Engibaryan. On the factorization of matrix and operator Wiener--Hopf integral equations. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 273-282. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/

[1] N. Wiener, E. Hopf, “Über eine Klasse singulärer Integralgleichungen”, Sitz. Akad. Wiss. Berlin, 1931, 696–706 | Zbl

[2] M. G. Kreĭn, “Integral equations on a half-line with kernel depending upon the difference of the arguments”, Amer. Math. Soc. Transl. Ser. 2, 22, Amer. Math. Soc., Providence, RI, 1962, 163–288 | DOI | MR | Zbl | Zbl

[3] S. Prössdorf, Einige Klassen singulärer Gleichungen, Lehrbucher Monogr. Geb. Exakten Wissensch., Math. Reihe, 46, Birkhäuser Verlag, Basel–Stuttgart, 1974, xii+353 pp. | DOI | MR | MR | Zbl | Zbl

[4] I. C. Gohberg, M. G. Kreĭn, “Systems of integral equations on a half line with kernels depending on the difference of arguments”, Amer. Math. Soc. Transl. Ser. 2, 14, Amer. Math. Soc., Providence, RI, 1960, 217–287 | DOI | MR | MR | Zbl | Zbl

[5] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of linear operators, v. 2, Oper. Theory Adv. Appl., 63, Birkhäuser Verlag, Basel, 1993, i–x and 469–1020 pp. | DOI | MR | Zbl

[6] N. B. Engibaryan, A. A. Arutyunyan, “Integral equations on the half-line with difference kernels, and nonlinear functional equatons”, Math. USSR-Sb., 26:1 (1975), 31–54 | DOI | MR | Zbl

[7] N. B. Engibaryan, “Factorization of matrix-functions and nonlinear integral equations”, Soviet J. Contemp. Math. Anal., Arm. Acad. Sci., 15:3 (1980), 65–76 | MR | Zbl

[8] N. B. Engibaryan, L. G. Arabadzhyan, “Systems of Wiener–Hopf integral equations, and nonlinear factorization equations”, Math. USSR-Sb., 52:1 (1985), 181–208 | DOI | MR | Zbl

[9] L. G. Arabadzhyan, N. B. Engibaryan, “Convolution equations and nonlinear functional equations”, J. Soviet Math., 36:6 (1987), 745–791 | DOI | MR | Zbl

[10] N. B. Engibaryan, “Conservative systems of integral convolution equations on the half-line and the entire line”, Sb. Math., 193:6 (2002), 847–867 | DOI | DOI | MR | Zbl

[11] I. Ts. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970, x+430 pp. | MR | MR | Zbl | Zbl