On the factorization of matrix and operator Wiener--Hopf integral equations
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 273-282

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\widehat{K}$ be a Wiener–Hopf operator, $\widehat{K}f(x)=\int_0^{\infty}K(x-t)f(t)\,dt$, $x\geqslant 0$, and let $\widehat{K}^*$ be the adjoint operator, $(f\widehat{K}^*)(t)=\int_0^{\infty}f(x)K(x-t)\,dx$, $t\geqslant 0$, where $K(x)$ belongs to the Banach space $L_1 (G,(-\infty,\infty))$ of Bochner strongly integrable functions with values in a Banach algebra $G$. We consider the canonical factorization problem $I-\widehat{K}=(I-\widehat{V}_-)(I-\widehat{V}_+)$, where $I$ is the identity operator and $\widehat{V}_-$ (resp. $\widehat{V}_+ $) is a left (resp. right) triangular convolution operator such that the operators $I-\widehat{V}_{\pm}$ are invertible in the spaces $L_{p} (G,(0,\infty))$, $1\leqslant p\leqslant \infty$. We put forward a semi-inverse factorization method and prove that the canonical factorization exists if and only if the operators $I-\widehat{K}$ and $I-\widehat{K}^*$ are invertible in $L_1 (G,(0,\infty))$.
Keywords: operator Wiener–Hopf integral equation, strongly integrable functions, semi-inverse Volterra factorization method.
@article{IM2_2018_82_2_a1,
     author = {N. B. Engibaryan},
     title = {On the factorization of matrix and operator {Wiener--Hopf} integral equations},
     journal = {Izvestiya. Mathematics },
     pages = {273--282},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - On the factorization of matrix and operator Wiener--Hopf integral equations
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 273
EP  - 282
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/
LA  - en
ID  - IM2_2018_82_2_a1
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T On the factorization of matrix and operator Wiener--Hopf integral equations
%J Izvestiya. Mathematics 
%D 2018
%P 273-282
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/
%G en
%F IM2_2018_82_2_a1
N. B. Engibaryan. On the factorization of matrix and operator Wiener--Hopf integral equations. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 273-282. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/