On the factorization of matrix and operator Wiener--Hopf integral equations
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 273-282
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\widehat{K}$ be a Wiener–Hopf operator, $\widehat{K}f(x)=\int_0^{\infty}K(x-t)f(t)\,dt$, $x\geqslant 0$, and let $\widehat{K}^*$ be the adjoint operator, $(f\widehat{K}^*)(t)=\int_0^{\infty}f(x)K(x-t)\,dx$, $t\geqslant 0$, where $K(x)$ belongs to the Banach space $L_1 (G,(-\infty,\infty))$ of Bochner strongly integrable functions with values in a Banach algebra $G$. We consider the canonical factorization problem $I-\widehat{K}=(I-\widehat{V}_-)(I-\widehat{V}_+)$, where $I$ is the identity operator and $\widehat{V}_-$ (resp. $\widehat{V}_+ $) is a left (resp. right) triangular convolution operator such that the operators $I-\widehat{V}_{\pm}$ are invertible in the spaces $L_{p} (G,(0,\infty))$, $1\leqslant p\leqslant \infty$. We put forward a semi-inverse factorization method and prove that the canonical factorization exists if and only if the operators $I-\widehat{K}$ and $I-\widehat{K}^*$ are invertible in $L_1 (G,(0,\infty))$.
Keywords:
operator Wiener–Hopf integral equation, strongly integrable functions,
semi-inverse Volterra factorization method.
@article{IM2_2018_82_2_a1,
author = {N. B. Engibaryan},
title = {On the factorization of matrix and operator {Wiener--Hopf} integral equations},
journal = {Izvestiya. Mathematics },
pages = {273--282},
publisher = {mathdoc},
volume = {82},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/}
}
N. B. Engibaryan. On the factorization of matrix and operator Wiener--Hopf integral equations. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 273-282. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a1/