Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_2_a0, author = {A. V. Arutyunov and A. V. Greshnov}, title = {$(q_1,q_2)$-quasimetric spaces. {Covering} mappings and coincidence points}, journal = {Izvestiya. Mathematics }, pages = {245--272}, publisher = {mathdoc}, volume = {82}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/} }
TY - JOUR AU - A. V. Arutyunov AU - A. V. Greshnov TI - $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points JO - Izvestiya. Mathematics PY - 2018 SP - 245 EP - 272 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/ LA - en ID - IM2_2018_82_2_a0 ER -
A. V. Arutyunov; A. V. Greshnov. $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 245-272. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/
[1] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl
[2] A. V. Arutyunov, “Stability of coincidence points and properties of covering mappings”, Math. Notes, 86:2 (2009), 153–158 | DOI | DOI | MR | Zbl
[3] A. V. Arutyunov, A. V. Greshnov, “Theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94:1 (2016), 434–437 | DOI | DOI | MR | Zbl
[4] A. V. Arutyunov, A. V. Greshnov, “Coincidence points of multivalued mappings in $(q_1,q_2)$-quasimetric spaces”, Dokl. Math., 96:2 (2017), 438–441 | DOI | DOI
[5] W. A. Wilson, “On quasi-metric spaces”, Amer. J. Math., 53:3 (1931), 675–684 | DOI | MR | Zbl
[6] D. Doitchinov, “On completeness in quasi-metric spaces”, Topology Appl., 30:2 (1988), 127–148 | DOI | MR | Zbl
[7] J. C. Kelly, “Bitopological spaces”, Proc. London Math. Soc. (3), 13 (1963), 71–89 | DOI | MR | Zbl
[8] I. L. Reilly, P. V. Subrahmanyam, M. K. Vamanamurthy, “Cauchy sequences in quasi-pseudo-metric spaces”, Monatsh. Math., 93:2 (1982), 127–140 | DOI | MR | Zbl
[9] H.-P. A. Künzi, C. M. Kivuvu, “The $B$-completion of a $T_0$-quasi-metric space”, Topology Appl., 156:12 (2009), 2070–2081 | DOI | MR | Zbl
[10] M. F. Sukhinin, Izbrannye glavy nelineinogo analiza, Izd-vo RUDN, M., 1992, 302 pp.
[11] P. S. Aleksandrov, V. V. Nemytskii, “Usloviya metrizuemosti topologicheskikh prostranstv i aksioma simmetrii”, Matem. sb., 3(45):3 (1938), 663–672 | Zbl
[12] S. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013, x+219 pp. | DOI | MR | Zbl
[13] S. Romaguera, M. Schellekens, “Duality and quasi-normability for complexity spaces”, Appl. Gen. Topol., 3:1 (2002), 91–112 | DOI | MR | Zbl
[14] G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR | Zbl
[15] G. E. Ivanov, “Weak convexity of sets and functions in a Banach space”, J. Convex Anal., 22:2 (2015), 365–398 | MR | Zbl
[16] J. Goubault-Larrecq, Non-Hausdorff topology and domain theory. Selected topics in point-set topology, New Math. Monogr., 22, Cambrige Univ. Press, Cambrige, 2013, vi+491 pp. | DOI | MR | Zbl
[17] M. Fréchet, “Sur quelques points du calcul fonctionnel”, Rend. Circ. Mat. Palermo, 22 (1906), 1–72 | DOI | Zbl
[18] A. H. Frink, “Distance functions and the metrization problem”, Bull. Amer. Math. Soc., 43:2 (1937), 133–142 | DOI | MR | Zbl
[19] E. W. Chittenden, “On the equivalence of ecart and voisinage”, Trans. Amer. Math. Soc., 18:2 (1917), 161–166 | DOI | MR | Zbl
[20] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR | Zbl
[21] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, x+140 pp. | DOI | MR | Zbl
[22] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl
[23] R. Alvarado, M. Mitrea, Hardy spaces on Ahlfors-regular quasi metric spaces. A sharp theory, Lecture Notes in Math., 2142, Springer, Cham, 2015, viii+486 pp. | DOI | MR | Zbl
[24] R. R. Coifman, G. Weiss, “Exstensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl
[25] H. Triebel, “A new approach to function spaces on quasi-metric spaces”, Rev. Mat. Complut., 18:1 (2005), 7–48 | DOI | MR | Zbl
[26] R. A. Masías, C. Segovia, “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33:3 (1979), 257–270 | DOI | MR | Zbl
[27] R. A. Masías, C. Segovia, “A decomposition into atoms of distributions on spaces of homogeneous type”, Adv. in Math., 33:3 (1979), 271–309 | DOI | MR | Zbl
[28] S. Czerwik, “Contraction mappings in $b$-metric spaces”, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11 | MR | Zbl
[29] S. Czerwik, “Nonlinear set-valued contraction mappings in $b$-metric spaces”, Atti Sem. Mat. Fis. Univ. Modena, 46:2 (1998), 263–276 | MR | Zbl
[30] M. Cvetković, E. Karapinar, V. Rakocević, “Some fixed point results on quasi-$b$-metric-like spaces”, J. Inequal. Appl., 2015 (2015), 374, 17 pp. | DOI | MR | Zbl
[31] C. Suanoom, C. Klin-eam, S. Suantai, “Dislocated quasi-$b$-metric spaces and fixed point theorems for cyclic weakly contractions”, J. Nonlinear Sci. Appl., 9:5 (2016), 2779–2788 | MR | Zbl
[32] A. Nagel, E. M. Stein, S. Wainger, “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155:1-2 (1985), 103–47 | DOI | MR | Zbl
[33] A. Bellaïche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 1–78 | DOI | MR | Zbl
[34] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl
[35] S. G. Basalaev, S. K. Vodopyanov, “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl
[36] A. V. Greshnov, “On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields”, Siberian Adv. Math., 22:2 (2012), 95–114 | DOI | MR | Zbl
[37] A. V. Greshnov, “Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$”, Siberian Adv. Math., 23:3 (2013), 180–191 | DOI | MR | Zbl
[38] M. Karmanova, S. Vodop'yanov, “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 233–335 | DOI | MR | Zbl
[39] A. V. Greshnov, M. V. Tryamkin, “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:4 (2015), 694–698 | DOI | DOI | MR | Zbl
[40] V. I. Burenkov, M. I. Goldman, Metodicheskie rekomendatsii k izucheniyu kursa “Funktsionalnye prostranstva”, Izd-vo UDN, M., 1989
[41] E. R. Avakov, A. V. Arutyunov, A. F. Izmailov, “On convergence rate estimates for power penalty methods”, Comput. Math. Math. Phys., 44:10 (2004), 1684–1695 | MR | Zbl
[42] R. Sengupta, “On fixed points of contraction maps acting in $(q_1,q_2)$-quasimetric spaces and geometrical properties of these spaces”, Eurasian Math. J., 8:3 (2017), 70–76
[43] M. M. Choban, “Fixed points of mappings defined on spaces with distance”, Carpathian J. Math., 32:2 (2016), 173–188 | MR
[44] A. V. Arutyunov, Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014, 188 pp.