$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 245-272
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce $(q_1,q_2)$-quasimetric spaces and investigate their properties.
We study covering mappings from one $(q_1,q_2$)-quasimetric space
to another and obtain sufficient conditions for the existence of coincidence
points of two mappings between such spaces provided that one of them is
covering and the other satisfies the Lipschitz condition. These results
are extended to multi-valued mappings. We prove that the coincidence points
are stable under small perturbations of the mappings.
Keywords:
generalized triangle inequality,
covering mappings, coincidence points, multi-valued mappings.
Mots-clés : $(q_1,q_2)$-quasimetric
Mots-clés : $(q_1,q_2)$-quasimetric
@article{IM2_2018_82_2_a0,
author = {A. V. Arutyunov and A. V. Greshnov},
title = {$(q_1,q_2)$-quasimetric spaces. {Covering} mappings and coincidence points},
journal = {Izvestiya. Mathematics },
pages = {245--272},
publisher = {mathdoc},
volume = {82},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/}
}
TY - JOUR AU - A. V. Arutyunov AU - A. V. Greshnov TI - $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points JO - Izvestiya. Mathematics PY - 2018 SP - 245 EP - 272 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/ LA - en ID - IM2_2018_82_2_a0 ER -
A. V. Arutyunov; A. V. Greshnov. $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 245-272. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/