$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points
Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 245-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce $(q_1,q_2)$-quasimetric spaces and investigate their properties. We study covering mappings from one $(q_1,q_2$)-quasimetric space to another and obtain sufficient conditions for the existence of coincidence points of two mappings between such spaces provided that one of them is covering and the other satisfies the Lipschitz condition. These results are extended to multi-valued mappings. We prove that the coincidence points are stable under small perturbations of the mappings.
Keywords: generalized triangle inequality, covering mappings, coincidence points, multi-valued mappings.
Mots-clés : $(q_1,q_2)$-quasimetric
@article{IM2_2018_82_2_a0,
     author = {A. V. Arutyunov and A. V. Greshnov},
     title = {$(q_1,q_2)$-quasimetric spaces. {Covering} mappings and coincidence points},
     journal = {Izvestiya. Mathematics },
     pages = {245--272},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - A. V. Greshnov
TI  - $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 245
EP  - 272
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/
LA  - en
ID  - IM2_2018_82_2_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A A. V. Greshnov
%T $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points
%J Izvestiya. Mathematics 
%D 2018
%P 245-272
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/
%G en
%F IM2_2018_82_2_a0
A. V. Arutyunov; A. V. Greshnov. $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points. Izvestiya. Mathematics , Tome 82 (2018) no. 2, pp. 245-272. http://geodesic.mathdoc.fr/item/IM2_2018_82_2_a0/

[1] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[2] A. V. Arutyunov, “Stability of coincidence points and properties of covering mappings”, Math. Notes, 86:2 (2009), 153–158 | DOI | DOI | MR | Zbl

[3] A. V. Arutyunov, A. V. Greshnov, “Theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Dokl. Math., 94:1 (2016), 434–437 | DOI | DOI | MR | Zbl

[4] A. V. Arutyunov, A. V. Greshnov, “Coincidence points of multivalued mappings in $(q_1,q_2)$-quasimetric spaces”, Dokl. Math., 96:2 (2017), 438–441 | DOI | DOI

[5] W. A. Wilson, “On quasi-metric spaces”, Amer. J. Math., 53:3 (1931), 675–684 | DOI | MR | Zbl

[6] D. Doitchinov, “On completeness in quasi-metric spaces”, Topology Appl., 30:2 (1988), 127–148 | DOI | MR | Zbl

[7] J. C. Kelly, “Bitopological spaces”, Proc. London Math. Soc. (3), 13 (1963), 71–89 | DOI | MR | Zbl

[8] I. L. Reilly, P. V. Subrahmanyam, M. K. Vamanamurthy, “Cauchy sequences in quasi-pseudo-metric spaces”, Monatsh. Math., 93:2 (1982), 127–140 | DOI | MR | Zbl

[9] H.-P. A. Künzi, C. M. Kivuvu, “The $B$-completion of a $T_0$-quasi-metric space”, Topology Appl., 156:12 (2009), 2070–2081 | DOI | MR | Zbl

[10] M. F. Sukhinin, Izbrannye glavy nelineinogo analiza, Izd-vo RUDN, M., 1992, 302 pp.

[11] P. S. Aleksandrov, V. V. Nemytskii, “Usloviya metrizuemosti topologicheskikh prostranstv i aksioma simmetrii”, Matem. sb., 3(45):3 (1938), 663–672 | Zbl

[12] S. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013, x+219 pp. | DOI | MR | Zbl

[13] S. Romaguera, M. Schellekens, “Duality and quasi-normability for complexity spaces”, Appl. Gen. Topol., 3:1 (2002), 91–112 | DOI | MR | Zbl

[14] G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR | Zbl

[15] G. E. Ivanov, “Weak convexity of sets and functions in a Banach space”, J. Convex Anal., 22:2 (2015), 365–398 | MR | Zbl

[16] J. Goubault-Larrecq, Non-Hausdorff topology and domain theory. Selected topics in point-set topology, New Math. Monogr., 22, Cambrige Univ. Press, Cambrige, 2013, vi+491 pp. | DOI | MR | Zbl

[17] M. Fréchet, “Sur quelques points du calcul fonctionnel”, Rend. Circ. Mat. Palermo, 22 (1906), 1–72 | DOI | Zbl

[18] A. H. Frink, “Distance functions and the metrization problem”, Bull. Amer. Math. Soc., 43:2 (1937), 133–142 | DOI | MR | Zbl

[19] E. W. Chittenden, “On the equivalence of ecart and voisinage”, Trans. Amer. Math. Soc., 18:2 (1917), 161–166 | DOI | MR | Zbl

[20] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR | Zbl

[21] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, x+140 pp. | DOI | MR | Zbl

[22] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl

[23] R. Alvarado, M. Mitrea, Hardy spaces on Ahlfors-regular quasi metric spaces. A sharp theory, Lecture Notes in Math., 2142, Springer, Cham, 2015, viii+486 pp. | DOI | MR | Zbl

[24] R. R. Coifman, G. Weiss, “Exstensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[25] H. Triebel, “A new approach to function spaces on quasi-metric spaces”, Rev. Mat. Complut., 18:1 (2005), 7–48 | DOI | MR | Zbl

[26] R. A. Masías, C. Segovia, “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33:3 (1979), 257–270 | DOI | MR | Zbl

[27] R. A. Masías, C. Segovia, “A decomposition into atoms of distributions on spaces of homogeneous type”, Adv. in Math., 33:3 (1979), 271–309 | DOI | MR | Zbl

[28] S. Czerwik, “Contraction mappings in $b$-metric spaces”, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11 | MR | Zbl

[29] S. Czerwik, “Nonlinear set-valued contraction mappings in $b$-metric spaces”, Atti Sem. Mat. Fis. Univ. Modena, 46:2 (1998), 263–276 | MR | Zbl

[30] M. Cvetković, E. Karapinar, V. Rakocević, “Some fixed point results on quasi-$b$-metric-like spaces”, J. Inequal. Appl., 2015 (2015), 374, 17 pp. | DOI | MR | Zbl

[31] C. Suanoom, C. Klin-eam, S. Suantai, “Dislocated quasi-$b$-metric spaces and fixed point theorems for cyclic weakly contractions”, J. Nonlinear Sci. Appl., 9:5 (2016), 2779–2788 | MR | Zbl

[32] A. Nagel, E. M. Stein, S. Wainger, “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155:1-2 (1985), 103–47 | DOI | MR | Zbl

[33] A. Bellaïche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 1–78 | DOI | MR | Zbl

[34] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[35] S. G. Basalaev, S. K. Vodopyanov, “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR | Zbl

[36] A. V. Greshnov, “On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields”, Siberian Adv. Math., 22:2 (2012), 95–114 | DOI | MR | Zbl

[37] A. V. Greshnov, “Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$”, Siberian Adv. Math., 23:3 (2013), 180–191 | DOI | MR | Zbl

[38] M. Karmanova, S. Vodop'yanov, “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 233–335 | DOI | MR | Zbl

[39] A. V. Greshnov, M. V. Tryamkin, “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:4 (2015), 694–698 | DOI | DOI | MR | Zbl

[40] V. I. Burenkov, M. I. Goldman, Metodicheskie rekomendatsii k izucheniyu kursa “Funktsionalnye prostranstva”, Izd-vo UDN, M., 1989

[41] E. R. Avakov, A. V. Arutyunov, A. F. Izmailov, “On convergence rate estimates for power penalty methods”, Comput. Math. Math. Phys., 44:10 (2004), 1684–1695 | MR | Zbl

[42] R. Sengupta, “On fixed points of contraction maps acting in $(q_1,q_2)$-quasimetric spaces and geometrical properties of these spaces”, Eurasian Math. J., 8:3 (2017), 70–76

[43] M. M. Choban, “Fixed points of mappings defined on spaces with distance”, Carpathian J. Math., 32:2 (2016), 173–188 | MR

[44] A. V. Arutyunov, Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014, 188 pp.