Sobolev-orthogonal systems of functions associated with an orthogonal system
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 212-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every system of functions $\{\varphi_k(x)\}$ which is orthonormal on $(a,b)$ with weight $\rho(x)$ and every positive integer $r$ we construct a new associated system of functions $\{\varphi_{r,k}(x)\}_{k=0}^\infty$ which is orthonormal with respect to a Sobolev-type inner product of the form $$ \langle f,g \rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+ \int_{a}^{b} f^{(r)}(t)g^{(r)}(t)\rho(t) \,dt. $$ We study the convergence of Fourier series in the systems $\{\varphi_{r,k}(x)\}_{k=0}^\infty$. In the important particular cases of such systems generated by the Haar functions and the Chebyshev polynomials $T_n(x)=\cos(n\arccos x)$, we obtain explicit representations for the $\varphi_{r,k}(x)$ that can be used to study their asymptotic properties as $k\to\infty$ and the approximation properties of Fourier sums in the system $\{\varphi_{r,k}(x)\}_{k=0}^\infty$. Special attention is paid to the study of approximation properties of Fourier series in systems of type $\{\varphi_{r,k}(x)\}_{k=0}^\infty$ generated by Haar functions and Chebyshev polynomials.
Keywords: Sobolev-orthogonal systems of functions associated with Haar functions; Sobolev-orthogonal systems of functions associated with Chebyshev polynomials; convergence of Fourier series of Sobolev-orthogonal functions; approximation properties of partial sums of Fourier series of Sobolev-orthogonal functions; convergence of Fourier series of Sobolev-orthogonal polynomials associated with Chebyshev polynomials.
@article{IM2_2018_82_1_a7,
     author = {I. I. Sharapudinov},
     title = {Sobolev-orthogonal systems of functions associated with an orthogonal system},
     journal = {Izvestiya. Mathematics },
     pages = {212--244},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a7/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Sobolev-orthogonal systems of functions associated with an orthogonal system
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 212
EP  - 244
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a7/
LA  - en
ID  - IM2_2018_82_1_a7
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Sobolev-orthogonal systems of functions associated with an orthogonal system
%J Izvestiya. Mathematics 
%D 2018
%P 212-244
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a7/
%G en
%F IM2_2018_82_1_a7
I. I. Sharapudinov. Sobolev-orthogonal systems of functions associated with an orthogonal system. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 212-244. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a7/

[1] I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | DOI | MR | Zbl

[2] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, Izd-vo DNTs, Makhachkala, 2004, 276 pp.

[3] I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | DOI | MR | Zbl

[4] I. I. Sharapudinov, “Approximation properties of the Vallée-Poussin means of partial sums of a mixed series of Legendre polynomials”, Math. Notes, 84:3 (2008), 417–434 | DOI | DOI | MR | Zbl

[5] I. I. Sharapudinov, T. I. Sharapudinov, “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1 (2010), 112–139 | DOI | DOI | MR | Zbl

[6] I. I. Sharapudinov, G. N. Muratova, “Nekotorye svoistva $r$-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76

[7] A. Iserles, P. E. Koch, S. P. Nørsett, J. M. Sanz-Serna, “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl

[8] F. Marcellán, M. Alfaro, M. L. Rezola, “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | MR | Zbl

[9] H. G. Meijer, “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl

[10] K. H. Kwon, L. L. Littlejohn, “The orthogonality of the Laguerre polynomials $\{L_n^{-k}(x)\}$ for positive integers $k$”, Ann. Numer. Math., 2:1-4 (1995), 289–303 | MR | Zbl

[11] K. H. Kwon, L. L. Littlejohn, “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl

[12] F. Marcellán, Yuan Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 ; arXiv: 6249v1 | DOI | MR | Zbl

[13] G. López, F. Marcellán, W. Van Assche, “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl

[14] A. A. Gončar, “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR | Zbl

[15] L. N. Trefethen, Spectral methods in MATLAB, Software Environ. Tools, 10, SIAM, Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl

[16] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations, Cornell Univ., Ithaca, NY, 1996, 300 pp.

[17] V. V. Solodovnikov, A. N. Dmitriev, N. D. Egupov, Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, M., 1986, 440 pp. | Zbl

[18] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481 pp. | MR | MR | Zbl | Zbl

[19] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem ryadov Chebysheva”, Sib. elektron. matem. izv., 7 (2010), 122–131 | MR | Zbl

[20] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Metod resheniya zadachi Koshi dlya obyknovennykh differentsialnykh uravnenii s ispolzovaniem ryadov Chebysheva”, Vych. met. programmirovanie, 14:2 (2013), 203–214

[21] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Primenenie ryadov Chebysheva dlya integrirovaniya obyknovennykh differentsialnykh uravnenii”, Sib. elektron. matem. izv., 11 (2014), 517–531 | MR | Zbl

[22] D. S. Lukomskii, P. A. Terekhin, “Primenenie sistemy Khaara k chislennomu resheniyu zadachi Koshi dlya lineinogo differentsialnogo uravneniya pervogo poryadka”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauch. kn., Saratov, 2016, 171–173

[23] M. G. Magomed-Kasumov, “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly, Nauch. kn., Saratov, 2016, 176–178

[24] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[25] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, R.I., 1959, ix+421 pp. | MR | Zbl | Zbl

[26] G. Gasper, “Positivity and special functions”, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Academic Press, New York, 1975, 375–433 | MR | Zbl

[27] B. Muckenhoupt, “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23:2 (1969), 306–310 | DOI | MR | Zbl