Sobolev-orthogonal systems of functions associated with an orthogonal system
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 212-244

Voir la notice de l'article provenant de la source Math-Net.Ru

For every system of functions $\{\varphi_k(x)\}$ which is orthonormal on $(a,b)$ with weight $\rho(x)$ and every positive integer $r$ we construct a new associated system of functions $\{\varphi_{r,k}(x)\}_{k=0}^\infty$ which is orthonormal with respect to a Sobolev-type inner product of the form $$ \langle f,g \rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+ \int_{a}^{b} f^{(r)}(t)g^{(r)}(t)\rho(t) \,dt. $$ We study the convergence of Fourier series in the systems $\{\varphi_{r,k}(x)\}_{k=0}^\infty$. In the important particular cases of such systems generated by the Haar functions and the Chebyshev polynomials $T_n(x)=\cos(n\arccos x)$, we obtain explicit representations for the $\varphi_{r,k}(x)$ that can be used to study their asymptotic properties as $k\to\infty$ and the approximation properties of Fourier sums in the system $\{\varphi_{r,k}(x)\}_{k=0}^\infty$. Special attention is paid to the study of approximation properties of Fourier series in systems of type $\{\varphi_{r,k}(x)\}_{k=0}^\infty$ generated by Haar functions and Chebyshev polynomials.
Keywords: Sobolev-orthogonal systems of functions associated with Haar functions; Sobolev-orthogonal systems of functions associated with Chebyshev polynomials; convergence of Fourier series of Sobolev-orthogonal functions; approximation properties of partial sums of Fourier series of Sobolev-orthogonal functions; convergence of Fourier series of Sobolev-orthogonal polynomials associated with Chebyshev polynomials.
@article{IM2_2018_82_1_a7,
     author = {I. I. Sharapudinov},
     title = {Sobolev-orthogonal systems of functions associated with an orthogonal system},
     journal = {Izvestiya. Mathematics },
     pages = {212--244},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a7/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Sobolev-orthogonal systems of functions associated with an orthogonal system
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 212
EP  - 244
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a7/
LA  - en
ID  - IM2_2018_82_1_a7
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Sobolev-orthogonal systems of functions associated with an orthogonal system
%J Izvestiya. Mathematics 
%D 2018
%P 212-244
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a7/
%G en
%F IM2_2018_82_1_a7
I. I. Sharapudinov. Sobolev-orthogonal systems of functions associated with an orthogonal system. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 212-244. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a7/