Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_1_a5, author = {A. E. Mamontov and D. A. Prokudin}, title = {Solubility of unsteady equations of multi-component viscous compressible fluids}, journal = {Izvestiya. Mathematics }, pages = {140--185}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/} }
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Solubility of unsteady equations of multi-component viscous compressible fluids JO - Izvestiya. Mathematics PY - 2018 SP - 140 EP - 185 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/ LA - en ID - IM2_2018_82_1_a5 ER -
A. E. Mamontov; D. A. Prokudin. Solubility of unsteady equations of multi-component viscous compressible fluids. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 140-185. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/
[1] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.
[2] K. L. Rajagopal, L. Tao, Mechanics of mixtures, Ser. Adv. Math. Appl. Sci., 35, World Sci. Publ., River Edge, NJ, 1995, xii+195 pp. | DOI | MR | Zbl
[3] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods Appl. Anal., 20:2 (2013), 179–195 | DOI | MR | Zbl
[4] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids”, Izv. Math., 78:3 (2014), 554–579 | DOI | DOI | MR | Zbl
[5] D. A. Prokudin, M. V. Krayushkina, “Razreshimost statsionarnoi kraevoi zadachi dlya modelnoi sistemy uravnenii barotropnogo dvizheniya smesi vyazkikh szhimaemykh zhidkostei”, Sib. zhurn. industr. matem., 19:3 (2016), 55–67 | DOI | MR | Zbl
[6] P.-L. Lions, Mathematical topics in fluid mechanics, Oxford Lecture Ser. Math. Appl., 2, Compressible models, The Clarendon Press, Oxford Univ. Press, New York, 1998, xiv+348 pp. | MR | Zbl
[7] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004, xii+212 pp. | MR | Zbl
[8] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004, xx+506 pp. | MR | Zbl
[9] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2009, xxxvi+382 pp. | DOI | MR | Zbl
[10] P. Plotnikov, J. Sokołowski, Compressible Navier–Stokes equations. Theory and shape optimization, IMPAN Monogr. Mat. (N. S.), 73, Birkhäuser/Springer Basel AG, Basel, 2012, xvi+457 pp. | DOI | MR | Zbl
[11] V. M. Zhdanov, Protsessy perenosa v mnogokomponentnoi plazme, Fizmatlit, M., 2009, 280 pp.
[12] E. Nagnibeda, E. Kustova, Non-equilibrium reacting gas flows. Kinetic theory of transport and relaxation processes, Heat Mass Transf., Springer-Verlag, Berlin, 2009, xiv+252 pp. | DOI | MR | Zbl
[13] V. N. Dorovskii, Yu. V. Perepechko, “Teoriya chastichnogo plavleniya”, Geologiya i geofizika, 1989, no. 9, 56–64
[14] Kh. Kh. Imomnazarov, Sh. Kh. Imomnazarov, M. M. Mamatkulov, E. G. Chernykh, “Fundamentalnoe reshenie dlya statsionarnogo uravneniya dvukhskorostnoi gidrodinamiki s odnim davleniem”, Sib. zhurn. industr. matem., 17:4 (2014), 60–66 | MR | Zbl
[15] E. Feireisl, “Some recent results on the existence of global-in-time weak solutions to the Navier–Stokes equations of a general barotropic fluid”, Math. Bohem., 127:2 (2002), 203–209 | MR | Zbl
[16] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | DOI | MR | Zbl
[17] D. Jesslé, A. Novotný, “Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime”, J. Math. Pures Appl. (9), 99:3 (2013), 280–296 | DOI | MR | Zbl
[18] E. Feireisl, A. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl
[19] M. E. Bogovskii, “Reshenie nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\operatorname{div}$ i $\operatorname{grad}$”, Tr. sem. S. L. Soboleva, 1, In-t matem. SO AN SSSR, Novosibirsk, 1980, 5–40 | MR | Zbl
[20] R. Coifman, Y. Meyer, “On commutators of singular integrals and bilinear singular integrals”, Trans. Amer. Math. Soc., 212 (1975), 315–331 | DOI | MR | Zbl
[21] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics: Heriot–Watt symposium, v. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.–London, 1979, 136–212 | MR | Zbl
[22] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids”, Sib. Math. J., 58:1 (2017), 113–127 | DOI | DOI | Zbl