Solubility of unsteady equations of multi-component viscous compressible fluids
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 140-185
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an initial-boundary value problem describing unsteady barotropic
motions of multi-component mixtures of viscous compressible fluids
in a bounded three-dimensional domain. The material derivative operator is
assumed to be common for all components and determined by the average
velocity of the mixture, but all other terms contain the separate velocities
of the components. The pressure is assumed
to be common and dependent on the total density. We impose no simplifying
assumptions (in particular, on the structure of the viscosity matrix)
besides those stated above and thus preserve all the terms in the equations
that naturally extend the Navier–Stokes model of motions
of one-component media. We prove the existence of weak generalized solutions
of the initial-boundary value problem.
Keywords:
existence theorem, unsteady boundary-value problem,
homogeneous mixture with multiple velocities
Mots-clés : viscous compressible fluid, effective viscous flux.
Mots-clés : viscous compressible fluid, effective viscous flux.
@article{IM2_2018_82_1_a5,
author = {A. E. Mamontov and D. A. Prokudin},
title = {Solubility of unsteady equations of multi-component viscous compressible fluids},
journal = {Izvestiya. Mathematics },
pages = {140--185},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/}
}
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Solubility of unsteady equations of multi-component viscous compressible fluids JO - Izvestiya. Mathematics PY - 2018 SP - 140 EP - 185 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/ LA - en ID - IM2_2018_82_1_a5 ER -
A. E. Mamontov; D. A. Prokudin. Solubility of unsteady equations of multi-component viscous compressible fluids. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 140-185. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/