Solubility of unsteady equations of multi-component viscous compressible fluids
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 140-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an initial-boundary value problem describing unsteady barotropic motions of multi-component mixtures of viscous compressible fluids in a bounded three-dimensional domain. The material derivative operator is assumed to be common for all components and determined by the average velocity of the mixture, but all other terms contain the separate velocities of the components. The pressure is assumed to be common and dependent on the total density. We impose no simplifying assumptions (in particular, on the structure of the viscosity matrix) besides those stated above and thus preserve all the terms in the equations that naturally extend the Navier–Stokes model of motions of one-component media. We prove the existence of weak generalized solutions of the initial-boundary value problem.
Keywords: existence theorem, unsteady boundary-value problem, homogeneous mixture with multiple velocities
Mots-clés : viscous compressible fluid, effective viscous flux.
@article{IM2_2018_82_1_a5,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Solubility of unsteady equations of multi-component viscous compressible fluids},
     journal = {Izvestiya. Mathematics },
     pages = {140--185},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Solubility of unsteady equations of multi-component viscous compressible fluids
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 140
EP  - 185
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/
LA  - en
ID  - IM2_2018_82_1_a5
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Solubility of unsteady equations of multi-component viscous compressible fluids
%J Izvestiya. Mathematics 
%D 2018
%P 140-185
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/
%G en
%F IM2_2018_82_1_a5
A. E. Mamontov; D. A. Prokudin. Solubility of unsteady equations of multi-component viscous compressible fluids. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 140-185. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a5/

[1] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.

[2] K. L. Rajagopal, L. Tao, Mechanics of mixtures, Ser. Adv. Math. Appl. Sci., 35, World Sci. Publ., River Edge, NJ, 1995, xii+195 pp. | DOI | MR | Zbl

[3] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods Appl. Anal., 20:2 (2013), 179–195 | DOI | MR | Zbl

[4] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids”, Izv. Math., 78:3 (2014), 554–579 | DOI | DOI | MR | Zbl

[5] D. A. Prokudin, M. V. Krayushkina, “Razreshimost statsionarnoi kraevoi zadachi dlya modelnoi sistemy uravnenii barotropnogo dvizheniya smesi vyazkikh szhimaemykh zhidkostei”, Sib. zhurn. industr. matem., 19:3 (2016), 55–67 | DOI | MR | Zbl

[6] P.-L. Lions, Mathematical topics in fluid mechanics, Oxford Lecture Ser. Math. Appl., 2, Compressible models, The Clarendon Press, Oxford Univ. Press, New York, 1998, xiv+348 pp. | MR | Zbl

[7] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004, xii+212 pp. | MR | Zbl

[8] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004, xx+506 pp. | MR | Zbl

[9] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2009, xxxvi+382 pp. | DOI | MR | Zbl

[10] P. Plotnikov, J. Sokołowski, Compressible Navier–Stokes equations. Theory and shape optimization, IMPAN Monogr. Mat. (N. S.), 73, Birkhäuser/Springer Basel AG, Basel, 2012, xvi+457 pp. | DOI | MR | Zbl

[11] V. M. Zhdanov, Protsessy perenosa v mnogokomponentnoi plazme, Fizmatlit, M., 2009, 280 pp.

[12] E. Nagnibeda, E. Kustova, Non-equilibrium reacting gas flows. Kinetic theory of transport and relaxation processes, Heat Mass Transf., Springer-Verlag, Berlin, 2009, xiv+252 pp. | DOI | MR | Zbl

[13] V. N. Dorovskii, Yu. V. Perepechko, “Teoriya chastichnogo plavleniya”, Geologiya i geofizika, 1989, no. 9, 56–64

[14] Kh. Kh. Imomnazarov, Sh. Kh. Imomnazarov, M. M. Mamatkulov, E. G. Chernykh, “Fundamentalnoe reshenie dlya statsionarnogo uravneniya dvukhskorostnoi gidrodinamiki s odnim davleniem”, Sib. zhurn. industr. matem., 17:4 (2014), 60–66 | MR | Zbl

[15] E. Feireisl, “Some recent results on the existence of global-in-time weak solutions to the Navier–Stokes equations of a general barotropic fluid”, Math. Bohem., 127:2 (2002), 203–209 | MR | Zbl

[16] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | DOI | MR | Zbl

[17] D. Jesslé, A. Novotný, “Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime”, J. Math. Pures Appl. (9), 99:3 (2013), 280–296 | DOI | MR | Zbl

[18] E. Feireisl, A. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl

[19] M. E. Bogovskii, “Reshenie nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\operatorname{div}$ i $\operatorname{grad}$”, Tr. sem. S. L. Soboleva, 1, In-t matem. SO AN SSSR, Novosibirsk, 1980, 5–40 | MR | Zbl

[20] R. Coifman, Y. Meyer, “On commutators of singular integrals and bilinear singular integrals”, Trans. Amer. Math. Soc., 212 (1975), 315–331 | DOI | MR | Zbl

[21] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics: Heriot–Watt symposium, v. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.–London, 1979, 136–212 | MR | Zbl

[22] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids”, Sib. Math. J., 58:1 (2017), 113–127 | DOI | DOI | Zbl