Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 61-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use a countable-support product of invariant Jensen's forcing notions to define a model of $\mathbf{ZFC}$ set theory in which the uniformization principle fails for some planar $\varPi_2^1$ set all of whose vertical cross-sections are countable sets and, more specifically, Vitali classes. We also define a submodel of that model, in which there exists a countable $\varPi_2^1$ sequence of Vitali classes $P_n$ whose union $\bigcup_nP_n$ is not a countable set. Of course, the axiom of choice fails in this submodel.
Keywords: uniformization, forcing
Mots-clés : Vitali classes.
@article{IM2_2018_82_1_a3,
     author = {V. G. Kanovei and V. A. Lyubetsky},
     title = {Non-uniformizable sets of second projective level with countable cross-sections in the form of {Vitali} classes},
     journal = {Izvestiya. Mathematics },
     pages = {61--90},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a3/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetsky
TI  - Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 61
EP  - 90
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a3/
LA  - en
ID  - IM2_2018_82_1_a3
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetsky
%T Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes
%J Izvestiya. Mathematics 
%D 2018
%P 61-90
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a3/
%G en
%F IM2_2018_82_1_a3
V. G. Kanovei; V. A. Lyubetsky. Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 61-90. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a3/

[1] N. Lusin, “Sur le problème de M. J. Hadamard d'uniformisation des ensembles”, C. R. Acad. Sci. Paris, 190 (1930), 349–351 | Zbl

[2] N. N. Luzin, Sobranie sochinenii, v. II, Deskriptivnaya teoriya mnozhestv, Izd-vo AN SSSR, M., 1958, 744 pp. | MR | Zbl

[3] V. A. Uspenskii, “Luzin's contribution to the descriptive theory of sets and functions: concepts, problems, predictions”, Russian Math. Surveys, 40:3 (1985), 97–134 | DOI | MR | Zbl

[4] J. Hadamard, R. Baire, H. Lebesgue, E. Borel, “Cinq lettres sur la théorie des ensembles”, Bull. Soc. Math. France, 33 (1905), 261–273 | DOI | MR | Zbl

[5] N. Lusin, “Sur le problème de M. Jacques Hadamard d'uniformisation des ensembles”, Mathematica (Cluj), 4 (1930), 54–66 | Zbl

[6] Y. Moschovakis, Descriptive set theory, Stud. Logic Found. Math., 100, North-Holland Publishing Co., Amsterdam–New York, 1980, xii+637 pp. | MR | Zbl

[7] V. G. Kanovei, V. A. Lyubetskii, “On some classical problems of descriptive set theory”, Russian Math. Surveys, 58 (2003), 839–927 | DOI | DOI | MR | Zbl

[8] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: borelevskie i proektivnye mnozhestva, MTsNMO, M., 2010, 320 pp. https://www.mccme.ru/free-books/kanovej/set_theory.pdf

[9] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: absolyutno nerazreshimye klassicheskie problemy, MTsNMO, M., 2013, 377 pp. http://biblio.mccme.ru/node/2878

[10] V. G. Kanovei, “Proektivnaya ierarkhiya Luzina: sovremennoe sostoyanie teorii”, Dobavlenie v kn.:, Spravochnaya kniga po matematicheskoi logike, v. II, Nauka, M., 1982, 273–364 | MR

[11] V. Kanovei, Borel equivalence relations. Structure and classification, Univ. Lecture Ser., 44, Amer. Math. Soc., Providence, RI, 2008, x+240 pp. | DOI | MR | Zbl

[12] M. Kondô, “L'uniformisation des complémentaires analytiques”, Proc. Imp. Acad., 13:8 (1937), 287–291 | DOI | MR | Zbl

[13] N. Lusin, P. Novikoff, “Choix effectif d'un point dans un complémentaire analytique arbitraire donné par un crible”, Fundamenta Math., 25 (1935), 559–560 | DOI | Zbl

[14] P. J. Cohen, Set theory and the continuum-hypothesis, W. A. Benjamin, Inc., New York–Amsterdam, 1968, vi+154 pp. | MR | MR | Zbl | Zbl

[15] K. Gödel, The consistency of the continuum hypothesis, Ann. of Math. Stud., 3, Princeton University Press, Princeton, N.J., 1940, 66 pp. | DOI | MR | MR | Zbl

[16] K. Hauser, R.-D. Schindler, “Projective uniformization revisited”, Ann. Pure Appl. Logic, 103:1-3 (2000), 109–153 | DOI | MR | Zbl

[17] A. Lévy, “Definability in axiomatic set theory. II”, Mathematical logic and foundations of set theory (Jerusalem, 1968), North-Holland, Amsterdam, 1970, 129–145 | MR | Zbl

[18] R. M. Solovay, “A model of set-theory in which every set of reals is Lebesgue measurable”, Ann. of Math. (2), 92 (1970), 1–56 | DOI | MR | Zbl

[19] V. G. Kanovei, V. A. Lyubetsky, “A countable definable set containing no definable elements”, Math. Notes, 102:3 (2017), 338–349 ; A countable definable set of reals containing no definable elements, arXiv: 1408.3901 | DOI | DOI | MR

[20] R. Jensen, “Definable sets of minimal degree”, Mathematical logic and foundations of set theory (Jerusalem, 1968), North-Holland, Amsterdam–London, 1970, 122–128 | MR | Zbl

[21] T. Jech, Set theory, Springer Monogr. Math., 3rd millennium ed., rev. and exp., Springer-Verlag, Berlin, 2003, xiv+769 pp. | DOI | MR | Zbl

[22] V. Kanovei, V. Lyubetsky, “Counterexamples to countable-section $\Pi^1_2$ uniformization and $\Pi^1_3$ separation”, Ann. Pure Appl. Logic, 167:3 (2016), 262–283 | DOI | MR | Zbl

[23] V. Kanovei, V. Lyubetsky, “A definable $\mathsf E_0$-class containing no definable elements”, Arch. Math. Logic, 54:5-6 (2015), 711–723 | DOI | MR | Zbl

[24] M. Golshani, V. Kanovei, V. Lyubetsky, “A Groszek–Laver pair of undistinguishable $\mathsf E_0$-classes”, MLQ Math. Log. Q., 63:1-2 (2017), 19–31 | DOI | MR

[25] W. Sierpiński, “L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse”, Bull. Acad. Sci. Cracovie, 1918 (1918), 97–152 | Zbl

[26] N. Lusin, “Sur les ensembles analytiques”, Fundamenta Math., 10 (1927), 1–95 | DOI | Zbl

[27] V. G. Kanovei, “Cardinality of the set of Vitali equivalence classes”, Math. Notes, 49:4 (1991), 370–374 | DOI | MR | Zbl

[28] T. J. Jech, Lectures in set theory, with particular emphasis on the method of forcing, Lecture Notes in Math., 217, Springer-Verlag, Berlin–New York, 1971, iv+137 pp. | DOI | MR | MR | Zbl | Zbl

[29] L. A. Harrington, A. S. Kechris, A. Louveau, “A Glimm–Effros dichotomy for Borel equivalence relations”, J. Amer. Math. Soc., 3:4 (1990), 903–928 | DOI | MR | Zbl

[30] “Set theory”, Handbook of mathematical logic, Part B, Stud. Logic Found. Math., 90, ed. J. Barwise, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977, 317–522 | MR | MR | Zbl | Zbl