Morera-type theorems in the hyperbolic disc
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 31-60

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be the group of conformal automorphisms of the unit disc $\mathbb{D}=\{z\in\mathbb{C}\colon |z|1\}$. We study the problem of the holomorphicity of functions $f$ on $\mathbb{D}$ satisfying the equation $$ \int_{\gamma_{\varrho}} f(g (z))\, dz=0 \quad \forall \, g\in G, $$ where $\gamma_{\varrho}=\{z\in\mathbb{C}\colon |z|=\varrho\}$ and $\rho\in (0,1)$ is fixed. We find exact conditions for holomorphicity in terms of the boundary behaviour of such functions. A by-product of our work is a new proof of the Berenstein–Pascuas two-radii theorem.
Keywords: holomorphicity, boundary behaviour.
Mots-clés : conformal automorphism
@article{IM2_2018_82_1_a2,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Morera-type theorems in the hyperbolic disc},
     journal = {Izvestiya. Mathematics },
     pages = {31--60},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Morera-type theorems in the hyperbolic disc
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 31
EP  - 60
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/
LA  - en
ID  - IM2_2018_82_1_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Morera-type theorems in the hyperbolic disc
%J Izvestiya. Mathematics 
%D 2018
%P 31-60
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/
%G en
%F IM2_2018_82_1_a2
V. V. Volchkov; Vit. V. Volchkov. Morera-type theorems in the hyperbolic disc. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 31-60. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/