Morera-type theorems in the hyperbolic disc
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 31-60
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be the group of conformal automorphisms of the unit disc
$\mathbb{D}=\{z\in\mathbb{C}\colon |z|1\}$.
We study the problem of the holomorphicity of functions $f$
on $\mathbb{D}$ satisfying the equation
$$
\int_{\gamma_{\varrho}} f(g (z))\, dz=0 \quad \forall \, g\in G,
$$
where $\gamma_{\varrho}=\{z\in\mathbb{C}\colon |z|=\varrho\}$ and $\rho\in
(0,1)$ is fixed. We find exact conditions for holomorphicity in terms
of the boundary behaviour of such functions. A by-product of our work is a new
proof of the Berenstein–Pascuas two-radii theorem.
Keywords:
holomorphicity, boundary behaviour.
Mots-clés : conformal automorphism
Mots-clés : conformal automorphism
@article{IM2_2018_82_1_a2,
author = {V. V. Volchkov and Vit. V. Volchkov},
title = {Morera-type theorems in the hyperbolic disc},
journal = {Izvestiya. Mathematics },
pages = {31--60},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/}
}
V. V. Volchkov; Vit. V. Volchkov. Morera-type theorems in the hyperbolic disc. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 31-60. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/