Morera-type theorems in the hyperbolic disc
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 31-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be the group of conformal automorphisms of the unit disc $\mathbb{D}=\{z\in\mathbb{C}\colon |z|1\}$. We study the problem of the holomorphicity of functions $f$ on $\mathbb{D}$ satisfying the equation $$ \int_{\gamma_{\varrho}} f(g (z))\, dz=0 \quad \forall \, g\in G, $$ where $\gamma_{\varrho}=\{z\in\mathbb{C}\colon |z|=\varrho\}$ and $\rho\in (0,1)$ is fixed. We find exact conditions for holomorphicity in terms of the boundary behaviour of such functions. A by-product of our work is a new proof of the Berenstein–Pascuas two-radii theorem.
Keywords: holomorphicity, boundary behaviour.
Mots-clés : conformal automorphism
@article{IM2_2018_82_1_a2,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Morera-type theorems in the hyperbolic disc},
     journal = {Izvestiya. Mathematics },
     pages = {31--60},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Morera-type theorems in the hyperbolic disc
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 31
EP  - 60
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/
LA  - en
ID  - IM2_2018_82_1_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Morera-type theorems in the hyperbolic disc
%J Izvestiya. Mathematics 
%D 2018
%P 31-60
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/
%G en
%F IM2_2018_82_1_a2
V. V. Volchkov; Vit. V. Volchkov. Morera-type theorems in the hyperbolic disc. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 31-60. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a2/

[1] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47:3 (1972), 237–254 | DOI | MR | Zbl

[2] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on spaces of constant curvature”, J. Analyse Math., 30 (1976), 113–130 | DOI | MR | Zbl

[3] V. V. Volchkov, “On a problem of Zalcman and its generalizations”, Math. Notes, 53:2 (1993), 134–138 | DOI | MR | Zbl

[4] C. A. Berenstein, D. C. Struppa, “Complex analysis and convolution equations”, Several complex variables V. Complex analysis in partial differential equations and mathematical physics, Encyclopaedia Math. Sci., 54, Springer-Verlag, Berlin, 1993, 1–108 | DOI | MR | Zbl

[5] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 365, Kluwer Acad. Publ., Dordrecht, 1992, 185–194 | DOI | MR | Zbl

[6] L. Zalcman, “Supplementary bibliography to: “A bibliographic survey of the Pompeiu problem””, Radon transforms and tomography (South Hadley, MA, 2000), Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69–74 | DOI | MR | Zbl

[7] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003, xii+454 pp. | DOI | MR | Zbl

[8] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2009, xii+671 pp. | DOI | MR | Zbl

[9] V. V. Volchkov, Vit. V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser/Springer Basel AG, Basel, 2013, x+592 pp. | DOI | MR | Zbl

[10] C. Berenstein, D. Pascuas, “Morera and mean-value type theorems in the hyperbolic disk”, Israel J. Math., 86:1-3 (1994), 61–106 | DOI | MR | Zbl

[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl

[12] L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48 (1947), 857–929 | DOI | MR | Zbl

[13] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | DOI | MR | Zbl

[14] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure Appl. Math., 113, Academic Press, Inc., Orlando, FL, 1984, xix+654 pp. | MR | MR | Zbl

[15] M. L. Agranovsky, “Propagation of boundary $CR$ foliations and Morera type theorems for manifolds with attached analytic disks”, Adv. Math., 211:1 (2007), 284–326 | DOI | MR | Zbl

[16] J. Globevnik, “Analyticity of functions analytic on circles”, J. Math. Anal. Appl., 360:2 (2009), 363–368 | DOI | MR | Zbl

[17] A. Tumanov, “A Morera type theorem in the strip”, Math. Res. Lett., 11:1 (2004), 23–29 | DOI | MR | Zbl

[18] A. Tumanov, “Testing analyticity on circles”, Amer. J. Math., 129:3 (2007), 785–790 | DOI | MR | Zbl

[19] S. Helgason, Integral geometry and Radon transforms, Springer, New York, 2011, xiv+301 pp. | DOI | MR | Zbl

[20] A. Kolmogorov, S. Fomine, Éléments de la théorie des fonctions et de l'analyse fonctionnelle, Ellipses, Paris; MIR, M., 1994, 536 pp. | MR | Zbl | Zbl

[21] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[22] P. Koosis, Introduction to $H^p$ spaces, With an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980, xv+376 pp. | MR | MR | Zbl | Zbl

[23] E. Ya. Riekstynsh, Asimptoticheskie razlozheniya integralov, v. I, Zinatne, Riga, 1974, 390 pp. | MR | Zbl

[24] S. Lang, $\operatorname{SL}_2(\mathbb{R})$, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975, xvi+428 pp. | MR | MR | Zbl