Inverse coefficient problems for a~non-linear convection--diffusion--reaction equation
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 14-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse coefficient problem for a stationary non-linear convection–diffusion–reaction equation in which the reaction coefficient depends rather arbitrarily on the concentration of the substance and on the spatial variable.
Keywords: optimality system, stability estimates.
Mots-clés : non-linear convection–diffusion–reaction equation, inverse coefficient problem
@article{IM2_2018_82_1_a1,
     author = {R. V. Brizitskii and Zh. Yu. Saritskaya},
     title = {Inverse coefficient problems for a~non-linear convection--diffusion--reaction equation},
     journal = {Izvestiya. Mathematics },
     pages = {14--30},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a1/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - Zh. Yu. Saritskaya
TI  - Inverse coefficient problems for a~non-linear convection--diffusion--reaction equation
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 14
EP  - 30
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a1/
LA  - en
ID  - IM2_2018_82_1_a1
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A Zh. Yu. Saritskaya
%T Inverse coefficient problems for a~non-linear convection--diffusion--reaction equation
%J Izvestiya. Mathematics 
%D 2018
%P 14-30
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a1/
%G en
%F IM2_2018_82_1_a1
R. V. Brizitskii; Zh. Yu. Saritskaya. Inverse coefficient problems for a~non-linear convection--diffusion--reaction equation. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 14-30. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a1/

[1] A. N. Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems, Scripta Series in Mathematics, V. H. Winston Sons, Washington, D.C.; John Wiley Sons, New York–Toronto, Ont.–London, 1977, xiii+258 pp. | MR | MR | Zbl

[2] G. I. Marchuk, Mathematical models in environmental problems, Stud. Math. Appl., 16, North-Holland Publishing Co., Amsterdam, 1986, 217 pp. | MR | MR | Zbl | Zbl

[3] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Extreme methods for solving ill-posed problems with applications to inverse heat transfer problems, Begell House, New York, NY, 1995, xii+306 pp. | MR | Zbl | Zbl

[4] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 13:4 (1997), 995–1013 | DOI | MR | Zbl

[5] V. I. Agoshkov, F. P. Minuk, A. S. Rusakov, V. B. Zalesny, “Study and solution of identification problems for nonstationary $2D$ and $3D$ convection–diffusion equations”, Russian J. Numer. Anal. Math. Modelling, 20:1 (2005), 19–43 | DOI | MR | Zbl

[6] G. V. Alekseev, D. A. Tereshko, “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid”, J. Inverse Ill-Posed Probl., 6:6 (1998), 521–562 | DOI | MR | Zbl

[7] G. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluid”, J. Inverse Ill-Posed Probl., 9:5 (2001), 435–468 | DOI | MR | Zbl

[8] Phuong Anh Nguyen, J.-P. Raymond, “Control problems for convection–diffusion equations with control localized on manifolds”, ESAIM Control Optim. Calc. Var., 6 (2001), 467–488 | DOI | MR | Zbl

[9] Phuong Anh Nguyen, J.-P. Raymond, “Pointwise control of the Boussinesq system”, Systems Control Lett., 60:4 (2011), 249–255 | DOI | MR | Zbl

[10] G. V. Alekseev, “Inverse extremal problems for stationary equations in mass transfer theory”, Comput. Math. Math. Phys., 42:3 (2002), 363–376 | MR | Zbl

[11] G. V. Alekseev, “Coefficient inverse extremum problems for stationary heat and mass transfer equations”, Comput. Math. Math. Phys., 47:6 (2007), 1007–1028 | DOI | MR | Zbl

[12] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Identification problems for a steady-state model of mass transfer”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 537–547 | DOI | MR | Zbl

[13] G. V. Alekseev, I. S. Vakhitov, O. V. Soboleva, “Stability estimates in identification problems for the convection–diffusion–reaction equation”, Comput. Math. Math. Phys., 52:12 (2012), 1635–1649 | DOI | MR | Zbl

[14] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 364 pp.

[15] V. V. Penenko, “Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment”, Num. Anal. Appl., 2:4 (2009), 341–351 | DOI | Zbl

[16] E. V. Dementeva, E. D. Karepova, V. V. Shaidurov, “Vosstanovlenie granichnoi funktsii po dannym nablyudenii dlya zadachi rasprostraneniya poverkhnostnykh voln v akvatorii s otkrytoi granitsei”, Sib. zhurn. industr. matem., 16:1 (2013), 10–20 | MR | Zbl

[17] A. I. Korotkii, D. A. Kovtunov, “Reconstruction of boundary regimes in the inverse problem of thermal convection of a high-viscosity fluid”, Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S81–S92 | DOI | MR | Zbl

[18] A. I. Korotkii, D. A. Kovtunov, “Optimal boundary control of a system describing thermal convection”, Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S74–S100 | DOI | MR | Zbl

[19] R. V. Brizitskii, Zh. Yu. Saritskaya, “Kraevaya i ekstremalnaya zadachi dlya nelineinogo uravneniya konvektsii-diffuzii-reaktsii”, Sib. elektron. matem. izv., 12 (2015), 447–456 | DOI | MR | Zbl

[20] G. V. Alekseev, R. V. Brizitskii, Zh. Yu. Saritskaya, “Stability estimates of solutions to extremal problems for a nonlinear convection–diffusion–reaction equation”, J. Appl. Ind. Math., 10:2 (2016), 155–167 | DOI | DOI | MR | Zbl

[21] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439:2 (2016), 678–689 | DOI | MR | Zbl

[22] A. E. Kovtanyuk, A. Yu. Chebotarev, “Stationary free convection problem with radiative heat exchange”, Differ. Equ., 50:12 (2014), 1592–1599 | DOI | DOI | MR | Zbl

[23] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | MR | Zbl | Zbl