On invertibility states of differential and difference operators
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 1-13

Voir la notice de l'article provenant de la source Math-Net.Ru

To every differential operator with unbounded operator coefficients we assign a difference operator in a space of bounded sequences. We prove the coincidence of the invertibility states of these operators (this means that the properties of the images and kernels of these operators coincide). We give a general scheme for proving the coincidence of the invertibility states of two abstract operators.
Keywords: invertibility states, Fredholm property, family of evolution operators, differential operator, difference operator.
@article{IM2_2018_82_1_a0,
     author = {A. G. Baskakov and V. B. Didenko},
     title = {On invertibility states of differential and difference operators},
     journal = {Izvestiya. Mathematics },
     pages = {1--13},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - V. B. Didenko
TI  - On invertibility states of differential and difference operators
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1
EP  - 13
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/
LA  - en
ID  - IM2_2018_82_1_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A V. B. Didenko
%T On invertibility states of differential and difference operators
%J Izvestiya. Mathematics 
%D 2018
%P 1-13
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/
%G en
%F IM2_2018_82_1_a0
A. G. Baskakov; V. B. Didenko. On invertibility states of differential and difference operators. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/