Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2018_82_1_a0, author = {A. G. Baskakov and V. B. Didenko}, title = {On invertibility states of differential and difference operators}, journal = {Izvestiya. Mathematics }, pages = {1--13}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/} }
A. G. Baskakov; V. B. Didenko. On invertibility states of differential and difference operators. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/
[1] S. G. Kreĭn, Linear differential equations in Banach space, Transl. Math. Monogr., 29, Amer. Math. Soc., Providence, RI, 1971, v+390 pp. | MR | MR | Zbl | Zbl
[2] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[3] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[4] V. B. Didenko, “On the spectral properties of differential operators with unbounded operator coefficients determined by a linear relation”, Math. Notes, 89:2 (2011), 224–237 | DOI | DOI | MR | Zbl
[5] V. B. Didenko, “On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects”, Izv. Math., 77:1 (2013), 3–19 | DOI | DOI | MR | Zbl
[6] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1035 | DOI | MR | Zbl
[7] A. G. Baskakov, V. B. Didenko, “Spectral analysis of differential operators with unbounded periodic coefficients”, Differ. Equ., 51:3 (2015), 325–341 | DOI | DOI | MR | Zbl
[8] S. S. Kutateladze, Fundamentals of functional analysis, Kluwer Texts Math. Sci., 12, Kluwer Acad. Publ., Dordrecht, 1996, xiv+276 pp. | DOI | MR | MR | Zbl | Zbl
[9] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl
[10] A. G. Baskakov, “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:6 (1996), 586–593 | DOI | DOI | MR | Zbl
[11] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl
[12] M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564 | DOI | DOI | MR | Zbl
[13] M. S. Bichegkuev, “Spectral analysis of differential operators with unbounded operator coefficients in weighted spaces of functions”, Math. Notes, 95:1 (2014), 15–21 | DOI | DOI | MR | Zbl
[14] A. G. Baskakov, A. Yu. Duplishcheva, “Difference operators and operator-valued matrices of the second order”, Izv. Math., 79:2 (2015), 217–232 | DOI | DOI | MR | Zbl
[15] A. G. Baskakov, V. D. Kharitonov, “Spectral analysis of operator polynomials and higher-order difference operators”, Math. Notes, 101:3 (2017), 391–405 | DOI | DOI | MR | Zbl