On invertibility states of differential and difference operators
Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

To every differential operator with unbounded operator coefficients we assign a difference operator in a space of bounded sequences. We prove the coincidence of the invertibility states of these operators (this means that the properties of the images and kernels of these operators coincide). We give a general scheme for proving the coincidence of the invertibility states of two abstract operators.
Keywords: invertibility states, Fredholm property, family of evolution operators, differential operator, difference operator.
@article{IM2_2018_82_1_a0,
     author = {A. G. Baskakov and V. B. Didenko},
     title = {On invertibility states of differential and difference operators},
     journal = {Izvestiya. Mathematics },
     pages = {1--13},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - V. B. Didenko
TI  - On invertibility states of differential and difference operators
JO  - Izvestiya. Mathematics 
PY  - 2018
SP  - 1
EP  - 13
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/
LA  - en
ID  - IM2_2018_82_1_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A V. B. Didenko
%T On invertibility states of differential and difference operators
%J Izvestiya. Mathematics 
%D 2018
%P 1-13
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/
%G en
%F IM2_2018_82_1_a0
A. G. Baskakov; V. B. Didenko. On invertibility states of differential and difference operators. Izvestiya. Mathematics , Tome 82 (2018) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/IM2_2018_82_1_a0/

[1] S. G. Kreĭn, Linear differential equations in Banach space, Transl. Math. Monogr., 29, Amer. Math. Soc., Providence, RI, 1971, v+390 pp. | MR | MR | Zbl | Zbl

[2] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[3] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[4] V. B. Didenko, “On the spectral properties of differential operators with unbounded operator coefficients determined by a linear relation”, Math. Notes, 89:2 (2011), 224–237 | DOI | DOI | MR | Zbl

[5] V. B. Didenko, “On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects”, Izv. Math., 77:1 (2013), 3–19 | DOI | DOI | MR | Zbl

[6] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1035 | DOI | MR | Zbl

[7] A. G. Baskakov, V. B. Didenko, “Spectral analysis of differential operators with unbounded periodic coefficients”, Differ. Equ., 51:3 (2015), 325–341 | DOI | DOI | MR | Zbl

[8] S. S. Kutateladze, Fundamentals of functional analysis, Kluwer Texts Math. Sci., 12, Kluwer Acad. Publ., Dordrecht, 1996, xiv+276 pp. | DOI | MR | MR | Zbl | Zbl

[9] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl

[10] A. G. Baskakov, “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:6 (1996), 586–593 | DOI | DOI | MR | Zbl

[11] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl

[12] M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564 | DOI | DOI | MR | Zbl

[13] M. S. Bichegkuev, “Spectral analysis of differential operators with unbounded operator coefficients in weighted spaces of functions”, Math. Notes, 95:1 (2014), 15–21 | DOI | DOI | MR | Zbl

[14] A. G. Baskakov, A. Yu. Duplishcheva, “Difference operators and operator-valued matrices of the second order”, Izv. Math., 79:2 (2015), 217–232 | DOI | DOI | MR | Zbl

[15] A. G. Baskakov, V. D. Kharitonov, “Spectral analysis of operator polynomials and higher-order difference operators”, Math. Notes, 101:3 (2017), 391–405 | DOI | DOI | MR | Zbl