On an inductive approach to the standard conjecture for a~fibred
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1253-1285.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that Grothendieck's standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operators $\ast$ and $\Lambda$ of Hodge theory holds for a 4-dimensional smooth projective complex variety fibred over a smooth projective curve $C$ provided that every degenerate fibre is a union of smooth irreducible components of multiplicity 1 with normal crossings, the standard conjecture $B(X_{\overline\eta})$ holds for a generic geometric fibre $X_{\overline\eta}$, there is at least one degenerate fibre $X_\delta$ and the rational cohomology rings $H^\ast(V_i,\mathbb{Q})$ and $H^\ast(V_i\cap V_j,\mathbb{Q})$ of the irreducible components $V_i$ of every degenerate fibre $X_\delta=V_1+\dots+V_m$ are generated by classes of algebraic cycles. We obtain similar results for 3-dimensional fibred varieties with algebraic invariant cycles (defined by the smooth part $\pi'\colon X'\to C'$ of the structure morphism $\pi\colon X\to C$) or with a degenerate fibre all of whose irreducible components $E_i$ possess the property $H^2(E_i,\mathbb{Q})= \operatorname{NS}(E_i)\otimes_{\mathbb{Z}}\mathbb{Q}$.
Keywords: algebraic cycle, Clemens–Schmid sequence.
Mots-clés : standard conjecture of Lefschetz type, Galois descent
@article{IM2_2017_81_6_a9,
     author = {S. G. Tankeev},
     title = {On an inductive approach to the standard conjecture for a~fibred},
     journal = {Izvestiya. Mathematics },
     pages = {1253--1285},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a9/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On an inductive approach to the standard conjecture for a~fibred
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1253
EP  - 1285
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a9/
LA  - en
ID  - IM2_2017_81_6_a9
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On an inductive approach to the standard conjecture for a~fibred
%J Izvestiya. Mathematics 
%D 2017
%P 1253-1285
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a9/
%G en
%F IM2_2017_81_6_a9
S. G. Tankeev. On an inductive approach to the standard conjecture for a~fibred. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1253-1285. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a9/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. Colloq. (Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl

[2] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[3] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | DOI | MR | Zbl

[4] F. Charles, E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl

[5] O. V. Nikol'skaya, “On algebraic cycles on a fibre product of families of $K3$-surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | DOI | MR | Zbl

[6] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Cambridge Math. Lib., 2nd ed., Cambridge, Cambridge Univ. Press, 2010, xviii+325 pp. | DOI | MR | Zbl

[7] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl

[8] S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207 | DOI | DOI | MR | Zbl

[9] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 359–386 | MR | Zbl

[10] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panor. Synthèses, 17, Soc. Math. France, Paris, 2004, xii+261 pp. | MR | Zbl

[11] J. Tate, “Algebraic cohomology classes”, Lecture notes prepared in connection with seminars held at the Summer Institute on Algebraic Geometry (Whitney Estate, Woods Hole, MA, July 6–31, 1964), Amer. Math. Soc., 1964, 25 pp. | MR | Zbl

[12] Vik. S. Kulikov, P. F. Kurchanov, “Complex algebraic varieties: periods of integrals and Hodge structures”, Algebraic geometry III, Encyclopaedia Math. Sci., 36, Springer, Berlin, 1998, 1–217 | DOI | MR | MR | Zbl | Zbl

[13] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44:1 (1974), 5–77 | DOI | MR | Zbl

[14] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[15] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[16] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl | Zbl

[17] N. Bourbaki, Éléments de mathématique. Algèbre. Ch. X. Algèbre homologique, Masson, Paris, 1980, vii+216 pp. | MR | MR | Zbl | Zbl

[18] B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”, Appendix B in: J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, 297–356 | MR | Zbl

[19] G. A. Mustafin, “Families of algebraic varieties and invariant cycles”, Math. USSR-Izv., 27:2 (1986), 251–278 | DOI | MR | Zbl

[20] D. R. Morrison, “The Clemens–Schmid exact sequence and applications”, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984, 101–119 | MR | Zbl

[21] A. Grothendieck, “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas”, Séconde partie, Inst. Hautes Études Sci. Publ. Math., 24 (1965), 5–223 | DOI | MR | Zbl

[22] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984, xi+470 pp. | DOI | MR | MR | Zbl

[23] Y. André, “Pour une théorie inconditionnelle des motifs”, Inst. Hautes Études Sci. Publ. Math., 83 (1996), 5–49 | DOI | MR | Zbl

[24] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, N.J., 1980, xiii+323 pp. | MR | MR | Zbl | Zbl

[25] R. Godement, Topologie algébrique et théorie des faisceaux, Actualités Sci. Ind., 1252, Publ. Math. Univ. Strasbourg., No. 13, Hermann, Paris, 1958, viii+283 pp. | MR | MR | Zbl | Zbl

[26] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 167–187 | DOI | DOI | MR | Zbl

[27] D. Mumford, “An analytic oonstruction of degenerating curves over complete local rings”, Compos. Math., 24:2 (1972), 129–174 | MR | MR | Zbl | Zbl

[28] D. Mumford, “An analytic construction of degenerating abelian varieties over complete rings”, Compos. Math., 24:3 (1972), 239–272 | MR | Zbl

[29] H. Morikawa, “Theta functions and abelian varieties over valuation fields of rank one. I”, Nagoya Math. J., 20 (1962), 1–27 | DOI | MR | Zbl

[30] S. G. Tankeev, “On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of Néron minimal models”, Izv. Math., 78:1 (2014), 169–200 | DOI | DOI | MR | Zbl

[31] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | MR | MR | Zbl | Zbl

[32] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II”, Ann. of Math. (2), 79 (1964), 109–203, 205–326 | DOI | MR | Zbl

[33] J. Harris, Algebraic geometry. A first course, Grad. Texts in Math., 133, Springer-Verlag, New York, 1992, xx+328 pp. | DOI | MR | Zbl

[34] Yu. I. Manin, “Lectures on $K$-functor in algebraic geometry”, Russian Math. Surveys, 24:5 (1969), 1–89 | DOI | MR | Zbl

[35] J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, xvi+368 pp. | MR | Zbl

[36] Vik. S. Kulikov, “Degenerations of $K3$ surfaces and Enriques surfaces”, Math. USSR-Izv., 11:5 (1977), 957–989 | DOI | MR | Zbl

[37] E. M. Friedlander, B. Mazur, Filtrations on the homology of algebraic varieties, Mem. Amer. Math. Soc., 529, Amer. Math. Soc., Providence, RI, 1994, x+110 pp. | MR | Zbl

[38] E. M. Friedlander, “Filtrations on algebraic cycles and homology”, Ann. Sci. École Norm. Sup. (4), 28:3 (1995), 317–343 | DOI | MR | Zbl