On an inductive approach to the standard conjecture for a~fibred
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1253-1285

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that Grothendieck's standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operators $\ast$ and $\Lambda$ of Hodge theory holds for a 4-dimensional smooth projective complex variety fibred over a smooth projective curve $C$ provided that every degenerate fibre is a union of smooth irreducible components of multiplicity 1 with normal crossings, the standard conjecture $B(X_{\overline\eta})$ holds for a generic geometric fibre $X_{\overline\eta}$, there is at least one degenerate fibre $X_\delta$ and the rational cohomology rings $H^\ast(V_i,\mathbb{Q})$ and $H^\ast(V_i\cap V_j,\mathbb{Q})$ of the irreducible components $V_i$ of every degenerate fibre $X_\delta=V_1+\dots+V_m$ are generated by classes of algebraic cycles. We obtain similar results for 3-dimensional fibred varieties with algebraic invariant cycles (defined by the smooth part $\pi'\colon X'\to C'$ of the structure morphism $\pi\colon X\to C$) or with a degenerate fibre all of whose irreducible components $E_i$ possess the property $H^2(E_i,\mathbb{Q})= \operatorname{NS}(E_i)\otimes_{\mathbb{Z}}\mathbb{Q}$.
Keywords: algebraic cycle, Clemens–Schmid sequence.
Mots-clés : standard conjecture of Lefschetz type, Galois descent
@article{IM2_2017_81_6_a9,
     author = {S. G. Tankeev},
     title = {On an inductive approach to the standard conjecture for a~fibred},
     journal = {Izvestiya. Mathematics },
     pages = {1253--1285},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a9/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On an inductive approach to the standard conjecture for a~fibred
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1253
EP  - 1285
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a9/
LA  - en
ID  - IM2_2017_81_6_a9
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On an inductive approach to the standard conjecture for a~fibred
%J Izvestiya. Mathematics 
%D 2017
%P 1253-1285
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a9/
%G en
%F IM2_2017_81_6_a9
S. G. Tankeev. On an inductive approach to the standard conjecture for a~fibred. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1253-1285. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a9/