Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_6_a6, author = {S. V. Nagaev}, title = {The spectral method and the central limit theorem for general {Markov} chains}, journal = {Izvestiya. Mathematics }, pages = {1168--1211}, publisher = {mathdoc}, volume = {81}, number = {6}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a6/} }
S. V. Nagaev. The spectral method and the central limit theorem for general Markov chains. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1168-1211. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a6/
[1] V. Romanovsky, “Recherches sur les chaînes de Markoff. Premier mémoire”, Acta Math., 66:1 (1936), 147–251 | DOI | MR | Zbl
[2] T. A. Sarymsakov, Osnovy teorii protsessov Markova, Gostekhizdat, 1954, 208 pp. | MR
[3] S. Kh. Sirazhdinov, “Utochnenie predelnykh teorem dlya tsepei Markova”, Dokl. AN SSSR, 84:6 (1952), 1143–1146 | MR | Zbl
[4] J. L. Doob, Stochastic processes, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., 1953, viii+654 pp. | MR | MR | Zbl
[5] S. V. Nagaev, “Some limit theorems for stationary Markov chains”, Theory Probab. Appl., 2:4 (1957), 378–406 | DOI | MR | Zbl
[6] S. V. Nagaev, “More exact statement of limit theorems for homogeneous Markov chains”, Theory Probab. Appl., 6:1 (1961), 62–81 | DOI | MR | Zbl
[7] H. Cramér, “Sur un nouveau théorème-limite de la théorie des probabilités”, Colloque consacré à la théorie des probabilités, 3, Actualités Sci. Indust., 736, Hermann, Paris, 1938, 5–23 | Zbl
[8] W. Richter, “Local limit theorems for large deviations”, Theory Probab. Appl., 2:2 (1957), 206–220 | DOI | MR | Zbl
[9] G. Yu. Aleshkyavichyus, “Nekotorye predelnye teoremy dlya summ sluchainykh velichin, zadannykh na odnorodnoi regulyarnoi tsepi Markova”, Litovsk. matem. sb., 6:3 (1966), 297–311 | MR | Zbl
[10] V. N. Tutubalin, “On limit theorems for products of random matrices”, Theory Probab. Appl., 10:1 (1965), 15–27 | DOI | MR | Zbl
[11] É. Le Page, “Théorèmes limites pour les produits de matrices aléatoires”, Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math., 928, Springer, Berlin–New York, 1982, 258–303 | DOI | MR | Zbl
[12] J. Rousseau-Egele, “Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux”, Ann. Probab., 11:3 (1983), 772–788 | DOI | MR | Zbl
[13] Y. Guivarc'h, “Application d'un théorème limite local à la transcience et à la recurrence de marches de Markov”, Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., 1096, Springer, Berlin, 1984, 301–332 | DOI | MR | Zbl
[14] Y. Guivarc'h, J. Hardy, “Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov”, Ann. Inst. H. Poincaré Probab. Statist., 24:1 (1988), 73–98 | MR | Zbl
[15] X. Milhaud, A. Raugi, “Étude de l'estimateur du maximum de vraisemblance dans le cas d'un processus autorégressif: convergence, normalité asymptotique, vitesse de convergence”, Ann. Inst. H. Poincaré Probab. Statist., 25:4 (1989), 383–428 | MR | Zbl
[16] H. Hennion, “Dérivabilité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes à coefficients positifs”, Ann. Inst. H. Poincaré Probab. Statist., 27:1 (1991), 27–59 | MR | Zbl
[17] H. Hennion, “Sur un théorème spectral et son application aux noyaux lipchitziens”, Proc. Amer. Math. Soc., 118:2 (1993), 627–634 | DOI | MR | Zbl
[18] H. Hennion, L. Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Math., 1766, Springer-Verlag, Berlin, 2001, viii+145 pp. | DOI | MR | Zbl
[19] H. Hennion, L. Hervé, “Central limit theorems for iterated random Lipschitz mappings”, Ann. Probab., 32:3A (2004), 1934–1984 | DOI | MR | Zbl
[20] F. Pene, “Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard”, Ann. Appl. Probab., 15:4 (2005), 2331–2392 | DOI | MR | Zbl
[21] Y. Guivarc'h, E. Le Page, “On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks”, Ergodic Theory Dynam. Systems, 28:2 (2008), 423–446 | DOI | MR | Zbl
[22] L. Hervé, F. Pène, “The Nagaev–Guivarc'h method via the Keller–Liverani theorem”, Bull. Soc. Math. France, 138:3 (2010), 415–489 | DOI | MR | Zbl
[23] T. E. Harris, “The existence of stationary measures for certain Markov processes”, Proceedings of the Third Berkeley symposium on mathematical statistics and probability (1954–1955), v. 2, Univ. of California Press, Berkeley–Los Angeles, 1956, 113–124 | MR | Zbl
[24] W. Doeblin, “Sur deux problèmes de Kolmogoroff concernant les chaînes dénombrables”, Bull. Soc. Math. France, 66 (1938), 210–220 | DOI | MR | Zbl
[25] Kai Lai Chung, Markov chains with stationary transition probabilities, Grundlehren Math. Wiss., 104, Springer-Verlag, Berlin–Götingen–Heiderberg, 1960, x+278 pp. | MR | Zbl | Zbl
[26] E. Bolthausen, “The Berry–Esseen theorem for functionals of discrete Markov chains”, Z. Wahrsch. Verw. Gebiete, 54:1 (1980), 59–73 | DOI | MR | Zbl
[27] S. Orey, “Recurrent Markov chains”, Pacific J. Math., 9:3 (1959), 805–827 | DOI | MR | Zbl
[28] R. Cogburn, “The central limit theorem for Markov processes”, Proceedings of the Sixth Berkeley symposium on mathematical statistics and probability (Univ. of California, 1970), v. 2, Univ. of California Press, Berkeley, CA, 1972, 485–512 | Zbl
[29] A. N. Kolmogorov, “Lokalnaya predelnaya teorema dlya klassicheskikh tsepei Markova”, Izv. AN SSSR. Ser. matem., 13:4 (1949), 281–300 | MR | Zbl
[30] S. V. Nagaev, “Lokalnaya predelnaya teorema dlya schetnykh tsepei Markova”, Predelnye teoremy teorii veroyatnostei, FAN, Tashkent, 1963, 69–74 | Zbl
[31] K. B. Athreya, P. Ney, “A new approach to the limit theory of recurrent Markov chains”, Trans. Amer. Math. Soc., 245 (1978), 493–501 | DOI | MR | Zbl
[32] E. Nummelin, “A splitting technique for Harris recurrent Markov chains”, Z. Wahrsch. Verw. Gebiete, 43:4 (1978), 309–318 | DOI | MR | Zbl
[33] S. V. Nagaev, “Some questions on the theory of homogeneous Markov process with discrete time”, Soviet Math. Dokl., 2 (1961), 867–869 | MR | Zbl
[34] S. V. Nagaev, “Ergodicheskie teoremy dlya markovskikh protsessov s diskretnym vremenem”, Sib. matem. zhurn., 6:2 (1965), 413–432 | MR | Zbl
[35] E. Bolthausen, “The Berry–Esseén theorem for strongly mixing Harris recurrent Markov chains”, Z. Wahrsch. Verw. Gebiete, 60:3 (1982), 283–289 | DOI | MR | Zbl
[36] S. V. Nagaev, “The spectral method and ergodic theorems for general Markov chains”, Izv. Math., 79:2 (2015), 311–345 | DOI | DOI | MR | Zbl
[37] S. V. Nagaev, A. B. Mukhin, “Ob odnom sluchae skhodimosti k ravnomernomu raspredeleniyu na otrezke”, Predelnye teoremy i statisticheskie vyvody, FAN, Tashkent, 1966, 113–117 | MR
[38] Ya. G. Sinai, “Gibbs measures in ergodic theory”, Russian Math. Surveys, 27:4 (1972), 21–69 | DOI | MR | Zbl
[39] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., 470, Springer-Verlag, Berlin–New York, 1975, i+108 pp. | MR | Zbl
[40] D. Ruelle, “Statistical mechanics of a one-dimensional lattice gas”, Comm. Math. Phys., 9:4 (1968), 267–278 | DOI | MR | Zbl
[41] D. Ruelle, “A measure associated with axiom-A attractors”, Amer. J. Math., 98:3 (1976), 619–654 | DOI | MR | Zbl
[42] L. A. Bunimovich, Ya. G. Sinai, “Markov partitions for dispersed billiards”, Comm. Math. Phys., 78:2 (1980), 247–280 | DOI | MR | Zbl
[43] L. A. Bunimovich, Ya. G. Sinai, “Statistical properties of Lorentz gas with periodic configuration of scatterers”, Comm. Math. Phys., 78:4 (1981), 479–497 | DOI | MR | Zbl
[44] A. I. Bufetov, “Decay of correlations for the Rauzy–Veech–Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials”, J. Amer. Math. Socs., 19:3 (2006), 579–623 | DOI | MR | Zbl
[45] M. Loève, Probability theory, 2nd ed., D. Van Nostrand Co., Inc., Princeton, N. J.–Toronto–New York–London, 1960, vi+685 pp. | MR | MR | Zbl