First-order properties of bounded quantifier depth of very sparse random graphs
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1155-1167
Voir la notice de l'article provenant de la source Math-Net.Ru
We say that a random graph obeys the zero-one $k$-law if every property
expressed by a first-order formula with quantifier depth at most $k$
holds with probability tending to $0$ or $1$. It is known that the
random graph $G(n,n^{-\alpha})$ obeys the zero-one $k$-law for every
$k\in\mathbb{N}$ and every positive irrational $\alpha$, as well as for all
rational $\alpha>1$ which are not of the form $1+1/l$ (for any positive
integer $l$). It is also known that for all other rational positive $\alpha$,
the random graph does not obey the zero-one $k$-law for sufficiently large $k$.
In this paper we put $\alpha=1+1/l$ and obtain upper and lower bounds for
the largest $k$ such that the zero-one $k$-law holds.
Keywords:
Erdős–Rényi random graph, first-order properties, zero-one law, Ehrenfeucht game.
@article{IM2_2017_81_6_a5,
author = {M. E. Zhukovskii and L. B. Ostrovskii},
title = {First-order properties of bounded quantifier depth of very sparse random graphs},
journal = {Izvestiya. Mathematics },
pages = {1155--1167},
publisher = {mathdoc},
volume = {81},
number = {6},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a5/}
}
TY - JOUR AU - M. E. Zhukovskii AU - L. B. Ostrovskii TI - First-order properties of bounded quantifier depth of very sparse random graphs JO - Izvestiya. Mathematics PY - 2017 SP - 1155 EP - 1167 VL - 81 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a5/ LA - en ID - IM2_2017_81_6_a5 ER -
M. E. Zhukovskii; L. B. Ostrovskii. First-order properties of bounded quantifier depth of very sparse random graphs. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1155-1167. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a5/