First-order properties of bounded quantifier depth of very sparse random graphs
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1155-1167

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that a random graph obeys the zero-one $k$-law if every property expressed by a first-order formula with quantifier depth at most $k$ holds with probability tending to $0$ or $1$. It is known that the random graph $G(n,n^{-\alpha})$ obeys the zero-one $k$-law for every $k\in\mathbb{N}$ and every positive irrational $\alpha$, as well as for all rational $\alpha>1$ which are not of the form $1+1/l$ (for any positive integer $l$). It is also known that for all other rational positive $\alpha$, the random graph does not obey the zero-one $k$-law for sufficiently large $k$. In this paper we put $\alpha=1+1/l$ and obtain upper and lower bounds for the largest $k$ such that the zero-one $k$-law holds.
Keywords: Erdős–Rényi random graph, first-order properties, zero-one law, Ehrenfeucht game.
@article{IM2_2017_81_6_a5,
     author = {M. E. Zhukovskii and L. B. Ostrovskii},
     title = {First-order properties of bounded quantifier depth of very sparse random graphs},
     journal = {Izvestiya. Mathematics },
     pages = {1155--1167},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a5/}
}
TY  - JOUR
AU  - M. E. Zhukovskii
AU  - L. B. Ostrovskii
TI  - First-order properties of bounded quantifier depth of very sparse random graphs
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1155
EP  - 1167
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a5/
LA  - en
ID  - IM2_2017_81_6_a5
ER  - 
%0 Journal Article
%A M. E. Zhukovskii
%A L. B. Ostrovskii
%T First-order properties of bounded quantifier depth of very sparse random graphs
%J Izvestiya. Mathematics 
%D 2017
%P 1155-1167
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a5/
%G en
%F IM2_2017_81_6_a5
M. E. Zhukovskii; L. B. Ostrovskii. First-order properties of bounded quantifier depth of very sparse random graphs. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1155-1167. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a5/