Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_6_a3, author = {A. A. Vasil'eva}, title = {Entropy numbers of embedding operators of function spaces on sets with tree-like structure}, journal = {Izvestiya. Mathematics }, pages = {1095--1142}, publisher = {mathdoc}, volume = {81}, number = {6}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a3/} }
TY - JOUR AU - A. A. Vasil'eva TI - Entropy numbers of embedding operators of function spaces on sets with tree-like structure JO - Izvestiya. Mathematics PY - 2017 SP - 1095 EP - 1142 VL - 81 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a3/ LA - en ID - IM2_2017_81_6_a3 ER -
A. A. Vasil'eva. Entropy numbers of embedding operators of function spaces on sets with tree-like structure. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1095-1142. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a3/
[1] A. A. Vasil'eva, “Widths of function classes on sets with tree-like structure”, J. Approx. Theory, 192 (2015), 19–59 | DOI | MR | Zbl
[2] A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 20:3 (2013), 360–373 | DOI | MR | Zbl
[3] A. A. Vasil'eva, “Embedding theorem for weighted Sobolev classes with weights that are functions of the distance to some $h$-set”, Russ. J. Math. Phys., 21:1 (2014), 112–122 | DOI | MR | Zbl
[4] A. A. Vasil'eva, “Some sufficient conditions for embedding a weighted Sobolev class on a John domain”, Siberian Math. J., 56:1 (2015), 54–67 | DOI | MR | Zbl
[5] A. A. Vasil'eva, “Widths of weighted Sobolev classes with weights that are functions of the distance to some $h$-set: some limit cases”, Russ. J. Math. Phys., 22:1 (2015), 127–140 | DOI | MR | Zbl
[6] D. Haroske, H. Triebel, “Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. I”, Math. Nachr., 167 (1994), 131–156 | DOI | MR | Zbl
[7] D. Haroske, H. Triebel, “Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. II”, Math. Nachr., 168 (1994), 109–137 | DOI | MR | Zbl
[8] D. D. Haroske, H. Triebel, “Wavelet bases and entropy numbers in weighted function spaces”, Math. Nachr., 278:1-2 (2005), 108–132 | DOI | MR | Zbl
[9] D. D. Haroske, L. Skrzypczak, “Spectral theory of some degenerate elliptic operators with local singularities”, J. Math. Anal. Appl., 371:1 (2010), 282–299 | DOI | MR | Zbl
[10] Th. Kühn, H.-G. Leopold, W. Sickel, L. Skrzypczak, “Entropy numbers of embeddings of weighted Besov spaces”, Constr. Approx., 23 (2006), 61–77 | DOI | MR | Zbl
[11] Th. Kühn, H.-G. Leopold, W. Sickel, L. Skrzypczak, “Entropy numbers of embeddings of weighted Besov spaces. III. Weights of logarithmic type”, Math. Z., 255:1 (2007), 1–15 | DOI | MR | Zbl
[12] Th. Kühn, H.-G. Leopold, W. Sickel, L. Skrzypczak, “Entropy numbers of embeddings of weighted Besov spaces. II”, Proc. Edinb. Math. Soc. (2), 49:2 (2006), 331–359 | DOI | MR | Zbl
[13] M. A. Lifshits, W. Linde, Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc., 157, no. 745, Amer. Math. Soc., Providence, RI, 2002, viii+87 pp. | DOI | MR | Zbl
[14] W. V. Li, W. Linde, “Approximation, metric entropy and small ball estimates for Gaussian measures”, Ann. Probab., 27:3 (1999), 1556–1578 | DOI | MR | Zbl
[15] M. Lifshits, W. Linde, “Compactness properties of weighted summation operators on trees”, Studia Math., 202:1 (2011), 17–47 | DOI | MR | Zbl
[16] A. Pietsch, Operator ideals, Mathematische Monographien, 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 451 pp. | MR | MR | Zbl | Zbl
[17] B. Carl, I. Stephani, Entropy, compactness and the approximation of operators, Cambridge Tracts in Math., 98, Cambridge Univ. Press, Cambridge, 1990, x+277 pp. | DOI | MR | Zbl
[18] D. E. Edmunds, H. Triebel, Function spaces, entropy numbers, differential operators, Cambridge Tracts in Math., 120, Cambridge Univ. Press, Cambridge, 1996, xii+252 pp. | DOI | MR | Zbl
[19] A. N. Kolmogorov, V. M. Tikhomirov $\varepsilon$-entropy and $\varepsilon$-capacity of sets in function spaces, Amer. Math. Soc. Transl. Ser. 2, 17, Amer. Math. Soc., Providence, RI, 1961, 227–364 | MR | MR | Zbl | Zbl
[20] V. M. Tikhomirov, “Ob $\varepsilon$-entropii nekotorykh klassov periodicheskikh funktsii”, UMN, 17:6(108) (1962), 163–169 | MR | Zbl
[21] M. Sh. Birman, M. Z. Solomyak, “Piecewise-polynomial approximations of functions of the classes $W_p^\alpha$”, Math. USSR-Sb., 2:3 (1967), 295–317 | DOI | MR | Zbl
[22] C. Schütt, “Entropy numbers of diagonal operators between symmetric Banach spaces”, J. Approx. Theory, 40:2 (1984), 121–128 | DOI | MR | Zbl
[23] D. E. Edmunds, Yu. Netrusov, “Entropy numbers of operators acting between vector-valued sequence spaces”, Math. Nachr., 286:5-6 (2013), 614–630 | DOI | MR | Zbl
[24] D. E. Edmunds, Yu. Netrusov, “Schütt's theorem for vector-valued sequence spaces”, J. Approx. Theory, 178 (2014), 13–21 | DOI | MR | Zbl
[25] D. D. Haroske, L. Skrzypczak, “Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I”, Rev. Mat. Complut., 21:1 (2008), 135–177 | DOI | MR | Zbl
[26] D. D. Haroske, L. Skrzypczak, “Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. II. General weights”, Ann. Acad. Sci. Fenn. Math., 36:1 (2011), 111–138 | DOI | MR | Zbl
[27] D. D. Haroske, L. Skrzypczak, “Entropy numbers of embeddings of function spaces with Muckenhoupt weights. III. Some limiting cases”, J. Funct. Spaces Appl., 9:2 (2011), 129–178 | DOI | MR | Zbl
[28] T. Kühn, “Entropy numbers of diagonal operators of logarithmic type”, Georgian Math. J., 8:2 (2001), 307–318 | MR | Zbl
[29] T. Kühn, “A lower estimate for entropy numbers”, J. Approx. Theory, 110:1 (2001), 120–124 | DOI | MR | Zbl
[30] T. Kühn, “Entropy numbers of general diagonal operators”, Rev. Mat. Complut., 18:2 (2005), 479–491 | DOI | MR | Zbl
[31] T. Kühn, “Entropy numbers in weighted function spaces. The case of intermediate weights”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 170–179 | MR | Zbl
[32] T. Kühn, “Entropy numbers in sequence spaces with an application to weighted function spaces”, J. Approx. Theory, 153:1 (2008), 40–52 | DOI | MR | Zbl
[33] E. N. Lomakina, V. D. Stepanov, “Asymptotic estimates for the approximation and entropy numbers of a one-weight Riemann–Liouville operator”, Siberian Adv. Math., 17:1 (2007), 1–36 | DOI | MR | Zbl
[34] M. A. Lifshits, “Bounds for entropy numbers for some critical operators”, Trans. Amer. Math. Soc., 364:4 (2012), 1797–1813 | DOI | MR | Zbl
[35] M. Lifshits, W. Linde, “Compactness properties of weighted summation operators on trees – the critical case”, Studia Math., 206:1 (2011), 75–96 | DOI | MR | Zbl
[36] H. Triebel, “Entropy and approximation numbers of limiting embeddings; an approach via Hardy inequalities and quadratic forms”, J. Approx. Theory, 164:1 (2012), 31–46 | DOI | MR | Zbl
[37] T. Mieth, “Entropy and approximation numbers of embeddings of weighted Sobolev spaces”, J. Approx. Theory, 192 (2015), 250–272 | DOI | MR | Zbl
[38] T. Mieth, Entropy and approximation numbers of weighted Sobolev spaces via bracketing, arXiv: 1509.00661v1
[39] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, v. I, II, Scripta Series in Mathematics, V. H. Winston Sons, Washington, D.C.; Halsted Press [John Wiley Sons], New York–Toronto, Ont.–London, 1978, 1979, viii+345 pp., viii+311 pp. | MR | MR | MR | Zbl | Zbl
[40] Yu. G. Reshetnyak, “Integral representations of differentiable functions in domains with nonsmooth boundary”, Siberian Math. J., 21:6 (1981), 833–839 | DOI | MR | Zbl
[41] Yu. G. Reshetnyak, “Zamechanie ob integralnykh predstavleniyakh differentsiruemykh funktsii mnogikh peremennykh”, Sib. matem. zhurnal, 25:5 (1984), 198–200 | MR | Zbl
[42] B. Bojarski, “Remarks on Sobolev imbedding inequalities”, Complex analysis (Joensuu, 1987), Lecture Notes in Math., 1351, Springer, Berlin, 1988, 52–68 | DOI | MR | Zbl
[43] M. Bricchi, “Existence and properties of $h$-sets”, Georgian Math. J., 9:1 (2002), 13–32 | MR | Zbl
[44] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995, xii+343 pp. | DOI | MR | Zbl
[45] A. A. Vasil'eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, J. Approx. Theory, 167 (2013), 1–41 | DOI | MR | Zbl
[46] A. A. Vasil'eva, “Widths of Sobolev weight classes on a domain with cusp”, Sb. Math., 206:10 (2015), 1375–1409 | DOI | DOI | MR | Zbl
[47] A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain”, Proc. Steklov Inst. Math., 280 (2013), 91–119 | DOI | MR | Zbl
[48] A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain: strong singularity at a point”, Rev. Mat. Complut., 27:1 (2014), 167–212 | DOI | MR | Zbl
[49] J. Bourgain, A. Pajor, S. J. Szarek, N. Tomczak-Jaegermann, “On the duality problem for entropy numbers of operators”, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., 1376, Springer, Berlin, 1989, 50–63 | DOI | MR | Zbl
[50] A. A. Vasil'eva, “Estimates for norms of two-weighted summation operators on a tree under some restrictions on weights”, Math. Nachr., 288:10 (2015), 1179–1202 | DOI | MR | Zbl
[51] N. Arcozzi, R. Rochberg, E. Sawyer, “Carleson measures for analytic Besov spaces”, Rev. Mat. Iberoamericana, 18:2 (2002), 443–510 | DOI | MR | Zbl
[52] N. Arcozzi, “Carleson measures for analytic Besov spaces: the upper triangle case”, JIPAM. J. Inequal. Pure Appl. Math., 6:1 (2005), Art. 13, 15 pp. | MR | Zbl