Approximation by sums of shifts of a~single function on the circle
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1080-1094

Voir la notice de l'article provenant de la source Math-Net.Ru

We study approximation properties of the sums $\sum_{k=1}^nf(t-a_k)$ of shifts of a single function $f$ in real spaces $L_p(\mathbb{T})$ and $C(\mathbb{T})$ on the circle $\mathbb{T}=[0,2\pi)$, and also in complex spaces of functions analytic in the unit disc. We obtain sufficient conditions in terms of the trigonometric Fourier coefficients of $f$ for these sums to be dense in the corresponding subspaces of functions with zero mean. We investigate the accuracy of these conditions. We also suggest a simple algorithm for the approximation by sums of plus or minus shifts of one particular function in $L_2(\mathbb{T})$ and obtain bounds for the rate of approximation.
Keywords: approximation, sums of shifts, semigroup.
Mots-clés : Fourier coefficients
@article{IM2_2017_81_6_a2,
     author = {P. A. Borodin},
     title = {Approximation by sums of shifts of a~single function on the circle},
     journal = {Izvestiya. Mathematics },
     pages = {1080--1094},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Approximation by sums of shifts of a~single function on the circle
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1080
EP  - 1094
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/
LA  - en
ID  - IM2_2017_81_6_a2
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Approximation by sums of shifts of a~single function on the circle
%J Izvestiya. Mathematics 
%D 2017
%P 1080-1094
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/
%G en
%F IM2_2017_81_6_a2
P. A. Borodin. Approximation by sums of shifts of a~single function on the circle. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1080-1094. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/