Approximation by sums of shifts of a~single function on the circle
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1080-1094.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study approximation properties of the sums $\sum_{k=1}^nf(t-a_k)$ of shifts of a single function $f$ in real spaces $L_p(\mathbb{T})$ and $C(\mathbb{T})$ on the circle $\mathbb{T}=[0,2\pi)$, and also in complex spaces of functions analytic in the unit disc. We obtain sufficient conditions in terms of the trigonometric Fourier coefficients of $f$ for these sums to be dense in the corresponding subspaces of functions with zero mean. We investigate the accuracy of these conditions. We also suggest a simple algorithm for the approximation by sums of plus or minus shifts of one particular function in $L_2(\mathbb{T})$ and obtain bounds for the rate of approximation.
Keywords: approximation, sums of shifts, semigroup.
Mots-clés : Fourier coefficients
@article{IM2_2017_81_6_a2,
     author = {P. A. Borodin},
     title = {Approximation by sums of shifts of a~single function on the circle},
     journal = {Izvestiya. Mathematics },
     pages = {1080--1094},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Approximation by sums of shifts of a~single function on the circle
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1080
EP  - 1094
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/
LA  - en
ID  - IM2_2017_81_6_a2
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Approximation by sums of shifts of a~single function on the circle
%J Izvestiya. Mathematics 
%D 2017
%P 1080-1094
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/
%G en
%F IM2_2017_81_6_a2
P. A. Borodin. Approximation by sums of shifts of a~single function on the circle. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1080-1094. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/

[1] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl

[2] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Sb. Math., 203:11 (2012), 1553–1570 | DOI | DOI | MR | Zbl

[3] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | DOI | MR | Zbl

[4] P. Chunaev, “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. Approx. Theory, 185 (2014), 98–106 | DOI | MR | Zbl

[5] M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izv. Math., 79:3 (2015), 431–448 | DOI | DOI | MR | Zbl

[6] N. Wiener, “Tauberian theorems”, Ann. of Math. (2), 33 (1932), 1–100 | DOI | MR | Zbl

[7] P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104 | DOI | DOI | MR | Zbl

[8] N. K. Bary, A treatise on trigonometric series, v. I, II, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[9] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:3 (1964), 403–410 | DOI | MR | Zbl

[10] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl

[11] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge Univ. Press, New York, 1957, x+166 pp. | MR | MR | Zbl | Zbl

[12] K. De Leeuw, Y. Katznelson, J.-P. Kahane, “Sur les coefficients de Fourier des fonctions continues”, C. R. Acad. Sci. Paris Sér. A, 285:16 (1977), 1001–1003 | MR | Zbl

[13] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[14] S. V. Kislyakov, “The Fourier coefficients of the boundary values of functions analytic in the disk and in the bidisk”, Proc. Steklov Inst. Math., 155 (1983), 75–91 | MR | Zbl

[15] V. I. Danchenko, “Approximation properties of sums of the form $\sum_k\lambda_kh(\lambda_k z)$”, Math. Notes, 83:5 (2008), 587–593 | DOI | DOI | MR | Zbl