Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_6_a2, author = {P. A. Borodin}, title = {Approximation by sums of shifts of a~single function on the circle}, journal = {Izvestiya. Mathematics }, pages = {1080--1094}, publisher = {mathdoc}, volume = {81}, number = {6}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/} }
P. A. Borodin. Approximation by sums of shifts of a~single function on the circle. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1080-1094. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/
[1] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl
[2] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Sb. Math., 203:11 (2012), 1553–1570 | DOI | DOI | MR | Zbl
[3] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | DOI | MR | Zbl
[4] P. Chunaev, “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. Approx. Theory, 185 (2014), 98–106 | DOI | MR | Zbl
[5] M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izv. Math., 79:3 (2015), 431–448 | DOI | DOI | MR | Zbl
[6] N. Wiener, “Tauberian theorems”, Ann. of Math. (2), 33 (1932), 1–100 | DOI | MR | Zbl
[7] P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104 | DOI | DOI | MR | Zbl
[8] N. K. Bary, A treatise on trigonometric series, v. I, II, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[9] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:3 (1964), 403–410 | DOI | MR | Zbl
[10] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl
[11] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, 45, Cambridge Univ. Press, New York, 1957, x+166 pp. | MR | MR | Zbl | Zbl
[12] K. De Leeuw, Y. Katznelson, J.-P. Kahane, “Sur les coefficients de Fourier des fonctions continues”, C. R. Acad. Sci. Paris Sér. A, 285:16 (1977), 1001–1003 | MR | Zbl
[13] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[14] S. V. Kislyakov, “The Fourier coefficients of the boundary values of functions analytic in the disk and in the bidisk”, Proc. Steklov Inst. Math., 155 (1983), 75–91 | MR | Zbl
[15] V. I. Danchenko, “Approximation properties of sums of the form $\sum_k\lambda_kh(\lambda_k z)$”, Math. Notes, 83:5 (2008), 587–593 | DOI | DOI | MR | Zbl