Approximation by sums of shifts of a~single function on the circle
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1080-1094
Voir la notice de l'article provenant de la source Math-Net.Ru
We study approximation properties of the sums
$\sum_{k=1}^nf(t-a_k)$ of shifts of a single function $f$
in real spaces $L_p(\mathbb{T})$ and $C(\mathbb{T})$ on the circle
$\mathbb{T}=[0,2\pi)$, and also in complex spaces of functions
analytic in the unit disc. We obtain sufficient conditions in terms
of the trigonometric Fourier coefficients of $f$ for these sums
to be dense in the corresponding subspaces
of functions with zero mean. We investigate the accuracy of these conditions.
We also suggest a simple algorithm for the approximation
by sums of plus or minus shifts of one particular function
in $L_2(\mathbb{T})$ and obtain bounds for the rate of approximation.
Keywords:
approximation, sums of shifts, semigroup.
Mots-clés : Fourier coefficients
Mots-clés : Fourier coefficients
@article{IM2_2017_81_6_a2,
author = {P. A. Borodin},
title = {Approximation by sums of shifts of a~single function on the circle},
journal = {Izvestiya. Mathematics },
pages = {1080--1094},
publisher = {mathdoc},
volume = {81},
number = {6},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/}
}
P. A. Borodin. Approximation by sums of shifts of a~single function on the circle. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1080-1094. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a2/