Gradient blow-up in generalized Burgers and Boussinesq equations
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1286-1296.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the influence of gradient non-linearity on the global solubility of initial-boundary value problems for a generalized Burgers equation and an improved Boussinesq equation which are used for describing one-dimensional wave processes in dissipative and dispersive media. For a large class of initial data, we obtain sufficient conditions for global insolubility and a bound for blow-up times. Using the Boussinesq equation as an example, we suggest a modification of the method of non-linear capacity which is convenient from a practical point of view and enables us to estimate the blow-up rate. We use the method of contraction mappings to study the possibility of instantaneous blow-up and short-time existence of solutions.
Keywords: gradient non-linearity, Burgers equation and generalized Boussinesq equations, blow-up phenomena, method of non-linear capacity.
@article{IM2_2017_81_6_a10,
     author = {E. V. Yushkov and M. O. Korpusov},
     title = {Gradient blow-up in generalized {Burgers} and {Boussinesq} equations},
     journal = {Izvestiya. Mathematics },
     pages = {1286--1296},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a10/}
}
TY  - JOUR
AU  - E. V. Yushkov
AU  - M. O. Korpusov
TI  - Gradient blow-up in generalized Burgers and Boussinesq equations
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1286
EP  - 1296
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a10/
LA  - en
ID  - IM2_2017_81_6_a10
ER  - 
%0 Journal Article
%A E. V. Yushkov
%A M. O. Korpusov
%T Gradient blow-up in generalized Burgers and Boussinesq equations
%J Izvestiya. Mathematics 
%D 2017
%P 1286-1296
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a10/
%G en
%F IM2_2017_81_6_a10
E. V. Yushkov; M. O. Korpusov. Gradient blow-up in generalized Burgers and Boussinesq equations. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1286-1296. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a10/

[1] S. A. Gabov, Vvedenie v teoriyu nelineinykh voln, Izd-vo MGU, 1988, 177 pp. | MR | Zbl

[2] N. M. Ryskin, D. I. Trubetskov, Nelineinye volny, Fizmatlit, M., 2000, 272 pp.

[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya Sobolevskogo tipa, Fizmatlit, M., 2007, 734 pp. | Zbl

[4] E. Mitidieri, S. I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl

[5] S. I. Pohozaev, “Blow-up of smooth solutions of the Korteweg–de Vries equation”, Nonlinear Anal., 75:12 (2012), 4688–4698 | DOI | MR | Zbl

[6] S. I. Pokhozhaev, “On a class of initial-boundary value problems for equations of Korteweg–de Vries type”, Differ. Equ., 48:3 (2012), 372–378 | DOI | MR | Zbl

[7] E. V. Yushkov, “Blowup of solutions of a Korteweg–de Vries-type equation”, Theoret. and Math. Phys., 172:1 (2012), 932–938 | DOI | DOI | MR | Zbl

[8] M. O. Korpusov, A. G. Sveshnikov, E. V. Yushkov, “Blow-up of solutions of non-linear equations of Kadomtsev–Petviashvili and Zakharov–Kuznetsov types”, Izv. Math., 78:3 (2014), 500–530 | DOI | DOI | MR | Zbl

[9] E. V. Yushkov, M. O. Korpusov, “Global unsolvability of one-dimensional problems for Burgers-type equations”, Math. Notes, 98:3 (2015), 503–514 | DOI | DOI | MR | Zbl

[10] M. O. Korpusov, A. A. Panin, “Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition”, Theoret. and Math. Phys., 175:2 (2013), 580–591 | DOI | DOI | MR | Zbl

[11] M. O. Korpusov, E. V. Yushkov, “Solution blowup for systems of shallow-water equations”, Theoret. and Math. Phys., 177:2 (2013), 1505–1514 | DOI | DOI | MR | Zbl

[12] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | MR | MR | Zbl | Zbl

[13] M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type”, Izv. Math., 79:5 (2015), 955–1012 | DOI | DOI | MR | Zbl

[14] A. A. Panin, “Local solvability and blowup of the solution of the Rosenau–Bürgers equation with different boundary conditions”, Theoret. and Math. Phys., 177:1 (2013), 1361–1376 | DOI | DOI | MR | Zbl

[15] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. 1, 2, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl