On comparing systems of random variables with the Rademacher sequence
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1063-1079

Voir la notice de l'article provenant de la source Math-Net.Ru

We ask whether inequalities between distributions of scalar polynomials of two sequences of random variables imply that the corresponding inequalities hold between the distributions of the norms of the corresponding vector sums in an arbitrary Banach space provided that one of the systems is the Rademacher system. We show that the answer is affirmative when the Rademacher functions form the majorizing system, and negative in the opposite case.
Keywords: Rademacher functions, independent random variables, Bernoulli's conjecture, $q$-concave Banach lattice, ${\mathcal K}$-functional.
@article{IM2_2017_81_6_a1,
     author = {S. V. Astashkin},
     title = {On comparing systems of random variables with the {Rademacher} sequence},
     journal = {Izvestiya. Mathematics },
     pages = {1063--1079},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On comparing systems of random variables with the Rademacher sequence
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1063
EP  - 1079
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/
LA  - en
ID  - IM2_2017_81_6_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On comparing systems of random variables with the Rademacher sequence
%J Izvestiya. Mathematics 
%D 2017
%P 1063-1079
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/
%G en
%F IM2_2017_81_6_a1
S. V. Astashkin. On comparing systems of random variables with the Rademacher sequence. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1063-1079. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/