On comparing systems of random variables with the Rademacher sequence
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1063-1079
Voir la notice de l'article provenant de la source Math-Net.Ru
We ask whether inequalities between distributions of scalar polynomials
of two sequences of random variables imply that the corresponding inequalities
hold between the distributions of the norms of the corresponding vector sums in an
arbitrary Banach space provided that one of the systems is the Rademacher
system. We show that the answer is affirmative when the Rademacher functions
form the majorizing system, and negative in the opposite case.
Keywords:
Rademacher functions, independent random variables, Bernoulli's conjecture,
$q$-concave Banach lattice, ${\mathcal K}$-functional.
@article{IM2_2017_81_6_a1,
author = {S. V. Astashkin},
title = {On comparing systems of random variables with the {Rademacher} sequence},
journal = {Izvestiya. Mathematics },
pages = {1063--1079},
publisher = {mathdoc},
volume = {81},
number = {6},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/}
}
S. V. Astashkin. On comparing systems of random variables with the Rademacher sequence. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1063-1079. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/