On comparing systems of random variables with the Rademacher sequence
Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1063-1079.

Voir la notice de l'article provenant de la source Math-Net.Ru

We ask whether inequalities between distributions of scalar polynomials of two sequences of random variables imply that the corresponding inequalities hold between the distributions of the norms of the corresponding vector sums in an arbitrary Banach space provided that one of the systems is the Rademacher system. We show that the answer is affirmative when the Rademacher functions form the majorizing system, and negative in the opposite case.
Keywords: Rademacher functions, independent random variables, Bernoulli's conjecture, $q$-concave Banach lattice, ${\mathcal K}$-functional.
@article{IM2_2017_81_6_a1,
     author = {S. V. Astashkin},
     title = {On comparing systems of random variables with the {Rademacher} sequence},
     journal = {Izvestiya. Mathematics },
     pages = {1063--1079},
     publisher = {mathdoc},
     volume = {81},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On comparing systems of random variables with the Rademacher sequence
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1063
EP  - 1079
VL  - 81
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/
LA  - en
ID  - IM2_2017_81_6_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On comparing systems of random variables with the Rademacher sequence
%J Izvestiya. Mathematics 
%D 2017
%P 1063-1079
%V 81
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/
%G en
%F IM2_2017_81_6_a1
S. V. Astashkin. On comparing systems of random variables with the Rademacher sequence. Izvestiya. Mathematics , Tome 81 (2017) no. 6, pp. 1063-1079. http://geodesic.mathdoc.fr/item/IM2_2017_81_6_a1/

[1] G. Pisier, “Les inégalités de Khintchine–Kahane, d'après C. Borell”, Séminaire sur la géométrie des espaces de Banach, v. 1977–1978, École Polytech., Palaiseau, 1978, Exp. No. 7, 14 pp. | MR | Zbl

[2] N. H. Asmar, S. Montgomery-Smith, “On the distribution of Sidon series”, Ark. Mat., 31:1 (1993), 13–26 | DOI | MR | Zbl

[3] A. Pełczyński, “Commensurate sequences of characters”, Proc. Amer. Math. Soc., 104:2 (1988), 525–531 | DOI | MR | Zbl

[4] J. Jakubowski, S. Kwapien, “On multiplicative systems of functions”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27:9 (1979), 689–694 | MR | Zbl

[5] S. V. Astashkin, “On the comparison of distribution functions of random variables”, Math. Notes, 87:1 (2010), 15–22 | DOI | DOI | MR | Zbl

[6] S. V. Astashkin, “Extraction of subsystems “majorized” by the Rademacher system”, Math. Notes, 65:4 (1999), 407–417 | DOI | DOI | MR | Zbl

[7] S. V. Astashkin, “Systems of random variables equivalent in distribution to the Rademacher system and $\mathscr K$-closed representability of Banach couples”, Sb. Math., 191:6 (2000), 779–807 | DOI | DOI | MR | Zbl

[8] S. V. Astashkin, “Rademacher functions in symmetric spaces”, J. Math. Sci. (N. Y.), 169:6 (2010), 725–886 | DOI | MR | Zbl

[9] M. Ledoux, M. Talagrand, Probability in Banach spaces. Isoperimetry and processes, Ergeb. Math. Grenzgeb. (3), 23, Springer-Verlag, Berlin, 1991, xii+480 pp. | DOI | MR | Zbl

[10] M. Talagrand, The generic chaining. Upper and lower bounds of stochastic processes, Springer Monogr. Math., Springer-Verlag, Berlin, 2005, viii+222 pp. | DOI | MR | Zbl

[11] W. Bednorz, R. Latała, “On the boundedness of Bernoulli processes”, Ann. of Math. (2), 180:3 (2014), 1167–1203 | DOI | MR | Zbl

[12] W. Bednorz, R. Latała, “On the suprema of Bernoulli processes”, C. R. Math. Acad. Sci. Paris, 351:3-4 (2013), 131–134 | DOI | MR | Zbl

[13] R. Latała, “On weak tail domination of random vectors”, Bull. Pol. Acad. Sci. Math., 57:1 (2009), 75–80 | DOI | MR | Zbl

[14] R. Latała, K. Oleszkiewicz, “On the best constant in the Khinchin–Kahane inequality”, Studia Math., 109:1 (1994), 101–104 | MR | Zbl

[15] J.-P. Kahane, Some random series of functions, D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968, viii+184 pp. | MR | MR | Zbl | Zbl

[16] N. N. Vakhania, V. I. Tarieladze, S. A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, D. Reidel Publishing Co., Dordrecht, 1987, xxvi+482 pp. | DOI | MR | MR | Zbl | Zbl

[17] S. V. Astashkin, “Rademacher chaos in symmetric spaces. II”, East J. Approx., 6:1 (2000), 71–86 | MR | Zbl

[18] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl

[19] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | MR | MR | Zbl

[20] S. J. Dilworth, S. J. Montgomery-Smith, “The distribution of vector-valued Rademacher series”, Ann. Probab., 21:4 (1993), 2046–2052 | DOI | MR | Zbl

[21] P. Hitczenko, “Domination inequality for martingale transforms of a Rademacher sequence”, Israel J. Math., 84:1-2 (1993), 161–178 | DOI | MR | Zbl

[22] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl

[23] J. Bourgain, M. Lewko, “Sidonicity and variants of Kaczmarz's problem”, Ann. Inst. Fourier (Grenoble), 67:3 (2017), 1321–1352 | DOI