On lower semicontinuity of the entropic disturbance and its applications in quantum information theory
Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 1044-1060
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an important characteristic of a quantum
channel called the entropic disturbance. It is defined
as the difference between the $\chi$-quantity of a generalized
ensemble and that of the image of the ensemble under the channel.
We prove the lower semicontinuity of the entropic disturbance for any
infinite-dimensional quantum channel on its natural domain.
A number of useful corollaries of this property are established,
in particular, the existence of a $\chi$-optimal ensemble
for any quantum channel and the continuity of the output
$\chi$-quantity under the energy-type input constraint.
Keywords:
von Neumann entropy, $\chi$-quantity, ensemble of quantum states,
quantum channel, classical capacity.
@article{IM2_2017_81_5_a5,
author = {M. E. Shirokov and A. S. Holevo},
title = {On lower semicontinuity of the entropic disturbance and its applications in quantum information theory},
journal = {Izvestiya. Mathematics },
pages = {1044--1060},
publisher = {mathdoc},
volume = {81},
number = {5},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a5/}
}
TY - JOUR AU - M. E. Shirokov AU - A. S. Holevo TI - On lower semicontinuity of the entropic disturbance and its applications in quantum information theory JO - Izvestiya. Mathematics PY - 2017 SP - 1044 EP - 1060 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a5/ LA - en ID - IM2_2017_81_5_a5 ER -
%0 Journal Article %A M. E. Shirokov %A A. S. Holevo %T On lower semicontinuity of the entropic disturbance and its applications in quantum information theory %J Izvestiya. Mathematics %D 2017 %P 1044-1060 %V 81 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a5/ %G en %F IM2_2017_81_5_a5
M. E. Shirokov; A. S. Holevo. On lower semicontinuity of the entropic disturbance and its applications in quantum information theory. Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 1044-1060. http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a5/