On lower semicontinuity of the entropic disturbance and its applications in quantum information theory
Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 1044-1060.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an important characteristic of a quantum channel called the entropic disturbance. It is defined as the difference between the $\chi$-quantity of a generalized ensemble and that of the image of the ensemble under the channel. We prove the lower semicontinuity of the entropic disturbance for any infinite-dimensional quantum channel on its natural domain. A number of useful corollaries of this property are established, in particular, the existence of a $\chi$-optimal ensemble for any quantum channel and the continuity of the output $\chi$-quantity under the energy-type input constraint.
Keywords: von Neumann entropy, $\chi$-quantity, ensemble of quantum states, quantum channel, classical capacity.
@article{IM2_2017_81_5_a5,
     author = {M. E. Shirokov and A. S. Holevo},
     title = {On lower semicontinuity of the entropic disturbance and its applications in quantum information theory},
     journal = {Izvestiya. Mathematics },
     pages = {1044--1060},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a5/}
}
TY  - JOUR
AU  - M. E. Shirokov
AU  - A. S. Holevo
TI  - On lower semicontinuity of the entropic disturbance and its applications in quantum information theory
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 1044
EP  - 1060
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a5/
LA  - en
ID  - IM2_2017_81_5_a5
ER  - 
%0 Journal Article
%A M. E. Shirokov
%A A. S. Holevo
%T On lower semicontinuity of the entropic disturbance and its applications in quantum information theory
%J Izvestiya. Mathematics 
%D 2017
%P 1044-1060
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a5/
%G en
%F IM2_2017_81_5_a5
M. E. Shirokov; A. S. Holevo. On lower semicontinuity of the entropic disturbance and its applications in quantum information theory. Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 1044-1060. http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a5/

[1] W. F. Stinespring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216 | DOI | MR | Zbl

[2] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp. | MR | Zbl

[3] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, Berlin, De Gruyter, 2012, xiv+349 pp. | DOI | MR | Zbl

[4] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd, “Gaussian quantum information”, Rev. Modern Phys., 84:2 (2012), 621–669 | DOI

[5] A. S. Holevo, “Some estimates of information transmitted through quantum communication channel”, Problems Inform. Transmission, 9:3 (1973), 177–183 | MR | Zbl

[6] F. Buscemi, S. Das, M. M. Wilde, “Approximate reversibility in the context of entropy gain, information gain, and complete positivity”, Phys. Rev. A, 93:6 (2016), 062314 | DOI

[7] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2005), 86–98 | DOI | DOI | MR | Zbl

[8] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000, xxvi+676 pp. | MR | Zbl

[9] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney–Toronto, 1968, xii+253 pp. | MR | Zbl

[10] K. R. Parthasarathy, Probability measures on metric spaces, Probab. Math. Statist., 3, Academic Press, Inc., New York–London, 1967, xi+276 pp. | MR | Zbl

[11] G. Lindblad, “Expectation and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[12] M. Ohya, D. Petz, Quantum entropy and its use, Texts Monogr. Phys., Springer-Verlag, Berlin, 1993, viii+335 pp. | MR | Zbl

[13] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–250 | DOI | MR

[14] G. Lindblad, “Entropy, information and quantum measurements”, Comm. Math. Phys., 33:4 (1973), 305–322 | DOI | MR

[15] Nan Li, Shunlong Luo, “Classical and quantum correlative capacities of quantum systems”, Phys. Rev. A, 84:4 (2011), 042124 | DOI

[16] M. M. Wilde, From classical to quantum Shannon theory, arXiv: 1106.1445

[17] M. E. Shirokov, A. S. Holevo, “On approximation of infinite-dimensional quantum channels”, Problems Inform. Transmission, 44:2 (2008), 73–90 | DOI | MR

[18] M. E. Shirokov, “Measures of correlations in infinite-dimensional quantum systems”, Sb. Math., 207:5 (2016), 724–768 | DOI | DOI | MR | Zbl

[19] A. S. Holevo, “Entanglement-assisted capacities of constrained quantum channels”, Theory Probab. Appl., 48:2 (2004), 243–255 | DOI | DOI | MR | Zbl

[20] M. E. Shirokov, Properties of probability measures on the set of quantum states and their applications, arXiv: math-ph/0607019

[21] E. M. Alfsen, Compact convex sets and boundary integrals, Ergeb. Math. Grenzgeb., 57, Springer-Verlag, New York–Heidelberg, 1971, x+210 pp. | MR | Zbl

[22] B. Schumacher, “Quantum coding”, Phys. Rev. A, 51:4 (1995), 2738 | DOI

[23] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal, “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem”, IEEE Trans. Inform. Theory, 48:10 (2002), 2637–2655 | DOI | MR | Zbl

[24] A. S. Holevo, M. E. Shirokov, “On classical capacities of infinite-dimensional quantum channels”, Problems Inform. Transmission, 49:1 (2013), 15–31 | DOI | MR | Zbl

[25] M. E. Shirokov, “Conditions for coincidence of the classical capacity and entanglement-assisted capacity of a quantum channel”, Problems Inform. Transmission, 48:2 (2012), 85–101 | DOI | MR | Zbl

[26] M. E. Shirokov, “Reversibility of a quantum channel: general conditions and their applications to Bosonic linear channels”, J. Math. Phys., 54:11 (2013), 112201, 19 pp. | DOI | MR | Zbl

[27] K. R. Davidson, L. W. Marcoux, H. Radjavi, “Transitive spaces of operators”, Integral Equations Operator Theory, 61:2 (2008) | DOI | MR | Zbl

[28] V. Giovannetti, A. S. Holevo, R. García-Patrón, “A solution of Gaussian optimizer conjecture for quantum channels”, Comm. Math. Phys., 334:3 (2015), 1553–1571 | DOI | MR | Zbl

[29] A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russian Math. Surveys, 70:2 (2015), 331–367 | DOI | DOI | MR | Zbl

[30] A. S. Holevo, “On the constrained classical capacity of infinite-dimensional covariant quantum channels”, J. Math. Phys., 57:1 (2016), 015203, 11 pp. | DOI | Zbl