An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals
Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 973-984

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on necessary conditions of Pontryagin's maximum principle type for an optimum of functionals given by multiple integrals. In contrast to the case of one-dimensional integrals, the maximum of the Pontryagin function is taken only over matrices of rank 1, not over all matrices. We give some examples.
Keywords: Pontryagin's maximum principle, multiple integrals, transversality conditions, necessary and sufficient conditions for strong or weak minima, semicontinuous extensions of variational problems, fields of extremals.
@article{IM2_2017_81_5_a2,
     author = {M. I. Zelikin},
     title = {An analogue of {Pontryagin's} maximum principle in problems of minimization of multiple integrals},
     journal = {Izvestiya. Mathematics },
     pages = {973--984},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 973
EP  - 984
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a2/
LA  - en
ID  - IM2_2017_81_5_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals
%J Izvestiya. Mathematics 
%D 2017
%P 973-984
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a2/
%G en
%F IM2_2017_81_5_a2
M. I. Zelikin. An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals. Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 973-984. http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a2/