An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals
Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 973-984.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on necessary conditions of Pontryagin's maximum principle type for an optimum of functionals given by multiple integrals. In contrast to the case of one-dimensional integrals, the maximum of the Pontryagin function is taken only over matrices of rank 1, not over all matrices. We give some examples.
Keywords: Pontryagin's maximum principle, multiple integrals, transversality conditions, necessary and sufficient conditions for strong or weak minima, semicontinuous extensions of variational problems, fields of extremals.
@article{IM2_2017_81_5_a2,
     author = {M. I. Zelikin},
     title = {An analogue of {Pontryagin's} maximum principle in problems of minimization of multiple integrals},
     journal = {Izvestiya. Mathematics },
     pages = {973--984},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 973
EP  - 984
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a2/
LA  - en
ID  - IM2_2017_81_5_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals
%J Izvestiya. Mathematics 
%D 2017
%P 973-984
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a2/
%G en
%F IM2_2017_81_5_a2
M. I. Zelikin. An analogue of Pontryagin's maximum principle in problems of minimization of multiple integrals. Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 973-984. http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a2/

[1] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, M., Nauka, 1979, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 с. ; Part II. The geometry and topology of manifolds, Grad. Texts in Math., 104, 1985, xv+430 pp. | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[2] M. I. Zelikin, Control theory and optimization, v. I, Encyclopaedia Math. Sci., 86, Homogeneous spaces and the Riccati equation in the calculus of variations, Springer-Verlag, Berlin, 2000, xii+284 pp. | DOI | MR | Zbl | Zbl

[3] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland Publishing Co., Amsterdam–New York, 1979, xii+460 pp. | MR | MR | Zbl | Zbl

[4] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, II, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1963, 1969, xi+329 pp., xv+470 pp. | MR | MR | MR | MR | Zbl | Zbl

[5] J. W. Milnor, J. D. Stasheff, Characteristic classes, Ann. of Math. Stud., 76, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1974, vii+331 pp. | DOI | MR | MR | Zbl | Zbl

[6] P. P. Mosolov, V. P. Myasnikov, Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981, 208 pp. | MR | Zbl

[7] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Interscience Publishers John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | MR | Zbl | Zbl

[8] P. K. Raschewski, Riemannsche Geometrie und Tensoranalysis, Hochschulbücher für Mathematik, 42, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959, 606 pp. | MR | MR | Zbl | Zbl

[9] A. T. Fomenko, Variatsionnye metody v topologii, Nauka, M., 1982, 344 pp. | MR | Zbl

[10] J. M. Ball, F. Murat, “$W^{1,p}$-quasiconvexity and variational problems for multiple integrals”, J. Funct. Anal., 58:3 (1984), 225–253 | DOI | MR | Zbl

[11] J. M. Ball, “Remarks on the paper 'Basic calculus of variations'”, Pacific J. Math., 116:1 (1985), 7–10 | DOI | MR | Zbl

[12] H. Boerner, “Über die Legendresche Bedingung und die Feldtheorien in der Variationsrechnung der mehrfachen Integrale”, Math. Z., 46 (1940), 720–742 | DOI | MR | Zbl

[13] C. Carathéodory, “Über die Variationsrechnung bei mehrfachen Integralen”, Acta Szeged, 4 (1929), 193–216 | Zbl

[14] A. Clebsch, “Über die zweite Variation vielfacher Integrale”, J. Reine Angew. Math., 1859:56 (1859), 122–148 | DOI | MR | Zbl

[15] J. J. Duistermaat, “On the Morse index in variational calculus”, Advances in Math., 21:2 (1976), 173–195 | DOI | MR | Zbl

[16] Th. De Donder, Théorie invariantive du calcul des variations, Gauthier-Villars, Paris, 1935, xxi+230 pp. | Zbl

[17] R. F. Dennemeyer, “Conjugate surfaces for multiple integral problems in the calculus of variations”, Pacific J. Math., 30:3 (1969), 621–638 | DOI | MR | Zbl

[18] K. O. Friedrichs, “Conservation equations and the laws of motion in classical physics”, Comm. Pure Appl. Math., 31:1 (1978), 123–131 | DOI | MR | Zbl

[19] M. Giaquinta, S. Hildebrandt, Calculus of variarions, v. 1, 2, Grundlehren Math. Wiss., 310, 311, Springer-Verlag, Berlin, 1996, xxx+474 pp., xxx+652 pp. | MR | MR | Zbl

[20] E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, viii+403 pp. | DOI | MR | Zbl

[21] J. Hadamard, “Sur quelques questions de calcul des variations”, Bull. Soc. Math. France, 33 (1905), 73–80 | DOI | MR | Zbl

[22] L. Hörmander, “Uniqueness theorems and estimates for normally hyperbolic partial differential equations of the second order”, Tolfte Skandinaviska Matematikerkongressen (Lund, 1953), Lunds Universitets Matematiska Institution, Lund, 1954, 105–115 | MR | Zbl

[23] Th. Lepage, “Sur les champs géodésiques des intégrales multiples”, Acad. Roy. Belgique. Bull. Cl. Sci. (5), 27 (1941), 27–46 | MR | Zbl

[24] J. Milnor, “On manifolds homeomorphic to the $7$-sphere”, Ann. of Math. (2), 64 (1956), 399–405 | DOI | MR | Zbl

[25] C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., 130, Springer-Verlag, New York, 1966, ix+506 pp. | MR | Zbl

[26] D. Serre, “Condition de Legendre–Hadamard; espaces de matrices de rang $\ne 1$”, C. R. Acad. Sci. Paris Sér. I Math., 293:1 (1981), 23–26 | MR | Zbl

[27] D. Serre, “Formes quadratiques et calcul des variations”, J. Math. Pures Appl. (9), 62:2 (1983), 177–196 | MR | Zbl

[28] E. Silverman, “A sufficient condition for the lower semicontinuity of parametric integrals”, Trans. Amer. Math. Soc., 167 (1972), 465–469 | DOI | MR | Zbl

[29] J. Simons, “Minimal varieties in Riemannian manifolds”, Ann. of Math. (2), 88 (1968), 62–105 | DOI | MR | Zbl

[30] S. Smale, “On the Morse index theorem”, J. Math. Mech., 14 (1965), 1049–1055 | MR | Zbl

[31] R. C. Swanson, “Fredholm intersection theory and elliptic boundary deformation problems. I”, J. Differential Equations, 28:2 (1978), 189–219 | DOI | MR | Zbl

[32] F. J. Terpstra, “Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung”, Math. Ann., 116:1 (1939), 166–180 | DOI | MR | Zbl

[33] K. Uhlenbeck, “The Morse index theorem in Hilbert space”, J. Differential Geometry, 8:4 (1973), 555–564 | DOI | MR | Zbl

[34] L. Van Hove, “Sur l'extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues”, Nederl. Akad. Wetensch., Proc., 50 (1947), 18–23 | MR | Zbl

[35] H. Weyl, “Geodesic fields in the calculus of variation for multiple integrals”, Ann. of Math. (2), 36:3 (1935), 607–629 | DOI | MR | Zbl

[36] M. I. Zelikin, “Theory of fields of extremals for multiple integrals”, Russian Math. Surveys, 66:4 (2011), 733–765 | DOI | DOI | MR | Zbl