Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes
Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 901-972.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the combinatorics of three families of simple 3-dimensional polytopes which play an important role in various problems of algebraic topology, hyperbolic geometry, graph theory, and their applications. The first family $\mathcal{P}_{\leqslant 6}$ consists of simple polytopes with at most hexagonal faces. The second family $\mathcal{P}_\mathrm{pog}$ consists of Pogorelov polytopes. The third family $\mathcal{F}$ consists of fullerenes and is the intersection of the first two. We show that in the case of fullerenes there are stronger results than for the first two. Our main tools are $k$-belts of faces, simple partitions of a disc and the operations of transformation and connected sum.
Keywords: fullerene, nanotube, Pogorelov polytope, operations of cutting off edges, operations of connected sum and addition of a belt, patches, $k$-belts.
Mots-clés : partition of a disc
@article{IM2_2017_81_5_a1,
     author = {V. M. Buchstaber and N. Yu. Erokhovets},
     title = {Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and {Pogorelov} polytopes},
     journal = {Izvestiya. Mathematics },
     pages = {901--972},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - N. Yu. Erokhovets
TI  - Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 901
EP  - 972
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a1/
LA  - en
ID  - IM2_2017_81_5_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A N. Yu. Erokhovets
%T Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes
%J Izvestiya. Mathematics 
%D 2017
%P 901-972
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a1/
%G en
%F IM2_2017_81_5_a1
V. M. Buchstaber; N. Yu. Erokhovets. Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes. Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 901-972. http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a1/

[1] R. F. Curl, “Dawn of the fullerenes: experiment and conjecture”, Nobel lecture, 1996, Nobel lectures: chemistry, 1996–2000, World Sci. Publ., Hackensack, NJ, 2003, 11–32 https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/curl-lecture.html

[2] H. W. Kroto, “Symmetry, space, stars and $C_{60}$”, Nobel lecture, 1996, Nobel lectures: chemistry, 1996–2000, World Sci. Publ., Singapore, 2003, 44–79 www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/kroto-lecture.html

[3] R. E. Smalley, “Discovering the fullerenes”, Nobel lecture, 1996, Nobel lectures: chemistry, 1996–2000, World Sci. Publ., Singapore, 2003, 89–102 www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/smalley-lecture.html

[4] G. Brinkmann, K. Coolsaet, J. Goedgebeur, H. Mélot, “House of graphs: a database of interesting graphs”, Discrete Appl. Math., 161:1-2 (2013), 311–314 http://hog.grinvin.org | DOI | MR | Zbl

[5] W. P. Thurston, “Shapes of polyhedra and triangulations of the sphere”, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998, 511–549 | DOI | MR | Zbl

[6] G. Brinkmann, A. W. M. Dress, “A constructive enumeration of fullerenes”, J. Algorithms, 23:2 (1997), 345–358 | DOI | MR

[7] G. Brinkmann, J. Goedgebeur, B. D. McKay, “The generation of fullerenes”, J. Chem. Inf. Model., 52:11 (2012), 2910–2918 | DOI

[8] V. Andova, F. Kardoš, R. Škrekovski, “Mathematical aspects of fullerenes”, Ars Math. Contemp., 11:2 (2016), 353–379 | MR | Zbl

[9] E. A. Kats, Fullereny, uglerodnye nanotrubki i nanoklastery. Rodoslovnaya form i idei, “Librokom”, M., 2014, 296 pp.

[10] F. Kardoš, A computer-assisted proof of a Barnette's conjecture: not only fullerene graphs are hamiltonian, arXiv: 1409.2440

[11] Feifei Fan, Jun Ma, Xiangjun Wang, $B$-Rigidity of flag $2$-spheres without $4$-belt, arXiv: 1511.03624

[12] Feifei Fan, Xiangjun Wang, “On the cohomology of moment-angle complexes associated to Gorenstein* complexes”, arXiv: 1508.00159

[13] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017) | DOI | DOI | MR

[14] V. M. Buchstaber, N. Erokhovets, Construction of fullerenes, arXiv: 1510.02948

[15] V. M. Buchstaber, N. Yu. Erokhovets, Fullerenes, polytopes and toric topology, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., World Sci. Publ., River Edge, NJ, 2017, 117 pp.; arXiv: 1609.02949

[16] V. M. Buchstaber, N. Yu. Erokhovets, “Finite sets of operations sufficient to construct any fullerene from $C_{20}$”, Struct. Chem., 28:1 (2017), 225–234 | DOI

[17] N. Yu. Erokhovets, “$k$-poyasa i rebernye tsikly trekhmernykh prostykh mnogogrannikov s ne bolee chem shestiugolnymi granyami”, Dalnevost. matem. zhurn., 15:2 (2015), 197–213 | MR | Zbl

[18] E. M. Andreev, “On convex polyhedra in Lobačevskiĭ spaces”, Math. USSR-Sb., 10:3 (1970), 413–440 | DOI | MR | Zbl

[19] E. M. Andreev, “On convex polyhedra of finite volume in Lobačevskiĭ space”, Math. USSR-Sb., 12:2 (1970), 255–259 | DOI | MR | Zbl

[20] M. Deza, M. Dutour Sikirić, M. I. Shtogrin, “Fullerenes and disk-fullerenes”, Russian Math. Surveys, 68:4 (2013), 665–720 | DOI | DOI | MR | Zbl

[21] J. Bornhöft, G. Brinkmann, J. Greinus, “Pentagon-hexagon-patches with short boundaries”, European J. Combin., 24:5 (2003), 517–529 | DOI | MR | Zbl

[22] G. Brinkmann, U. v. Nathusius, A. H. R. Palser, “A constructive enumeration of nanotube caps”, Discrete Appl. Math., 116:1-2 (2002), 55–71 | DOI | MR | Zbl

[23] G. Brinkmann, P. W. Fowler, D. E. Manolopoulos, A. H. R. Palser, “A census of nanotube caps”, Chem. Phys. Lett., 315:5-6 (1999), 335–347 | DOI

[24] B. Grünbaum, G. C. Shephard, Tilings and patterns, Dover Books on Math., 2nd ed., Dover Publications, Inc., Mineola, NY, 2016, 720 pp.

[25] E. A. Lord, A. L. Mackay, S. Ranganathan, New geometries for new materials, Cambridge Univ. Press, Cambridge, 2006, x+238 pp. | Zbl

[26] V. M. Buchstaber, T. E. Panov, “On manifolds defined by 4-colourings of simple 3-polytopes”, Russian Math. Surveys, 71:6 (2016), 1137–1139 | DOI | DOI | MR | Zbl

[27] T. Došlić, “On lower bounds of number of perfect matchings in fullerene graphs”, J. Math. Chem., 24:4 (1998), 359–364 | DOI | MR | Zbl

[28] T. Došlić, “Cyclical edge-connectivity of fullerene graphs and $(k,6)$-cages”, J. Math. Chem., 33:2 (2003), 103–112 | DOI | MR | Zbl

[29] V. M. Buchstaber, N. Yu. Erokhovets, “Truncations of simple polytopes and applications”, Proc. Steklov Inst. Math., 289 (2015), 104–133 | DOI | DOI | MR | Zbl

[30] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR | Zbl

[31] A. V. Pogorelov, “A regular partition of Lobachevskian space”, Math. Notes, 1:1 (1967), 3–5 | DOI | MR | Zbl

[32] A. Yu. Vesnin, “Pryamougolnye mnogogranniki i trekhmernye giperbolicheskie mnogoobraziya”, UMN, 72:2(434) (2017), 147–190 | DOI | MR

[33] T. Inoue, “Organizing volumes of right-angled hyperbolic polyhedra”, Algebr. Geom. Topol., 8:3 (2008), 1523–1565 | DOI | MR | Zbl

[34] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Siberian Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl

[35] A. Yu. Vesnin, “Volumes of hyperbolic Löbell 3-manifolds”, Math. Notes, 64:1 (1998), 15–19 | DOI | DOI | MR | Zbl

[36] T. Inoue, The 825 smallest right-angled hyperbolic polyhedra, arXiv: 1512.01761

[37] G. Brinkmann, J. E. Graver, C. Justus, “Numbers of faces in disordered patches”, J. Math. Chem., 45:2 (2009), 263–278 | DOI | MR | Zbl

[38] M. Hasheminezhad, H. Fleischner, B. D. McKay, “A universal set of growth operations for fullerenes”, Chem. Phys. Lett., 464:1-3 (2008), 118–121 | DOI

[39] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | DOI | MR | Zbl

[40] B. Grünbaum, Convex polytopes, Grad. Texts in Math., 221, 2nd ed., Springer-Verlag, New York, 2003, xvi+468 pp. | DOI | MR | Zbl

[41] V. Eberhard, Zur Morphologie der Polyeder, B. G. Teubner, Leipzig, 1891, iv+245 pp. | Zbl

[42] V. Schlegel, “Theorie der homogen zusammengesetzten Raumgebilde”, Nova Acta, Ksl. Leop.-Carol. Deutschen Akademie der Naturforscher, 44:4 (1883), 343–459 | Zbl

[43] B. Grünbaum, T. S. Motzkin, “The number of hexagons and the simplicity of geodesics on certain polyhedra”, Canad. J. Math., 15 (1963), 744–751 | DOI | MR | Zbl

[44] H. W. Kroto, “The stability of the fullerenes $C_n$, with $n=$24, 28, 32, 36, 50, 60 and 70”, Nature, 329 (1987), 529–531 | DOI

[45] J. Cioslowski, “Note on the asymptotic isomer count of large fullerenes”, J. Math. Chem., 52:1 (2014), 1–5 | DOI | MR | Zbl

[46] C. Jordan, Cours d'analyse de l'École polytechnique, v. III, Calcul intégral: équations différentielles, Gauthier-Villars, Paris, 1887, 587–594 | Zbl

[47] A. Schoenflies, “Beiträge zur Theorie der Punktmengen. III”, Math. Ann., 62:2 (1906), 286–328 | DOI | MR | Zbl

[48] A. F. Filippov, “Elementarnoe dokazatelstvo teoremy Zhordana”, UMN, 5:5(39) (1950), 173–176 | MR | Zbl

[49] B. Mohar, C. Thomassen, Graphs on surfaces, Johns Hopkins Stud. Math. Sci., John Hopkins Univ. Press, Baltimore, MD, 2001, xii+291 pp. | MR | Zbl

[50] L. Siebenmann, “The Osgood–Schoenflies theorem revisited”, Russian Math. Surveys, 60:4 (2005), 645–672 | DOI | DOI | MR | Zbl

[51] R. Diestel, Graph theory, Grad. Texts in Math., 173, 2nd ed., Springer-Verlag, New York, 2000, xiv+313 pp. | MR | Zbl

[52] J. A. Bondy, U. S. R. Murty, Graph theory, Grad. Texts in Math., 244, Springer, New York, 2008, xii+651 pp. | MR | Zbl

[53] I. Fáry, “On straight-line representation of planar graphs”, Acta Univ. Szeged. Sect. Sci. Math., 11 (1948), 229–233 | MR | Zbl

[54] F. Kardoš, R. Škrekovski, “Cyclic edge-cuts in fullerene graphs”, J. Math. Chem., 44:1 (2008), 121–132 | DOI | MR | Zbl

[55] F. Kardoš, M. Krnc, B. Lužar, R. Škrekovski, “Cyclic $7$-edge-cuts in fullerene graphs”, J. Math. Chem., 47:2 (2010), 771–789 | DOI | MR | Zbl

[56] V. M. Buchstaber, V. D. Volodin, “Combinatorial $2$-truncated cubes and applications”, Associahedra, Tamari lattices, and related structures, Tamari memorial Festschrift, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, 161–186 | DOI | MR | Zbl

[57] V. M. Bukhshtaber, N. Yu. Erokhovets, T. E. Panov, “Algebra i kombinatorika vypuklykh mnogogrannikov”, Pril. k kn.: G. M. Tsigler, Teoriya mnogogrannikov, MTsNMO, M., 2014, 426–521

[58] M. Endo, H. W. Kroto, “Formation of carbon nanofibers”, J. Phys. Chem., 96:17 (1992), 6941–6944 | DOI

[59] A. J. Stone, D. J. Wales, “Theoretical studies of icosahedral $C_{60}$ and some related species”, Chem. Phys. Lett., 128:5-6 (1986), 501–503 | DOI

[60] M. Brückner, Vielecke und Vielflache. Theorie und Geschichte, B. G. Teubner, Leipzig, 1900, viii+227 pp. | Zbl

[61] E. S. Fedorov, “Osnovaniya morfologii i sistematiki mnogogrannikov”, Zap. Imper. S.-Peterb. mineralog. o-va Cer. 2, 30 (1893), 241–341 | Zbl

[62] V. D. Volodin, “Combinatorics of flag simplicial 3-polytopes”, Russian Math. Surveys, 70:1 (2015), 168–170 ; arXiv: 1212.4696 | DOI | DOI | MR | Zbl

[63] K. Kutnar, D. Marušič, “On cyclic edge-connectivity of fullerenes”, Discrete Appl. Math., 156:10 (2008), 1661–1669 | DOI | MR | Zbl

[64] J. Goedgebeur, B. D. McKay, “Recursive generation of IPR fullerenes”, J. Math. Chem., 53:8 (2015), 1702–1724 | DOI | MR | Zbl

[65] Bobo Hua, Yanhui Su, Total curvature of planar graphs with nonnegative combinatorial curvature, arXiv: 1703.04119v1

[66] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl

[67] B. Grünbaum, “Some analogues of Eberhard's theorem on convex polytopes”, Israel J. Math., 6:4 (1968), 398–411 | DOI | MR | Zbl