Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_5_a1, author = {V. M. Buchstaber and N. Yu. Erokhovets}, title = {Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and {Pogorelov} polytopes}, journal = {Izvestiya. Mathematics }, pages = {901--972}, publisher = {mathdoc}, volume = {81}, number = {5}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a1/} }
TY - JOUR AU - V. M. Buchstaber AU - N. Yu. Erokhovets TI - Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes JO - Izvestiya. Mathematics PY - 2017 SP - 901 EP - 972 VL - 81 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a1/ LA - en ID - IM2_2017_81_5_a1 ER -
%0 Journal Article %A V. M. Buchstaber %A N. Yu. Erokhovets %T Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes %J Izvestiya. Mathematics %D 2017 %P 901-972 %V 81 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a1/ %G en %F IM2_2017_81_5_a1
V. M. Buchstaber; N. Yu. Erokhovets. Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes. Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 901-972. http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a1/
[1] R. F. Curl, “Dawn of the fullerenes: experiment and conjecture”, Nobel lecture, 1996, Nobel lectures: chemistry, 1996–2000, World Sci. Publ., Hackensack, NJ, 2003, 11–32 https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/curl-lecture.html
[2] H. W. Kroto, “Symmetry, space, stars and $C_{60}$”, Nobel lecture, 1996, Nobel lectures: chemistry, 1996–2000, World Sci. Publ., Singapore, 2003, 44–79 www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/kroto-lecture.html
[3] R. E. Smalley, “Discovering the fullerenes”, Nobel lecture, 1996, Nobel lectures: chemistry, 1996–2000, World Sci. Publ., Singapore, 2003, 89–102 www.nobelprize.org/nobel_prizes/chemistry/laureates/1996/smalley-lecture.html
[4] G. Brinkmann, K. Coolsaet, J. Goedgebeur, H. Mélot, “House of graphs: a database of interesting graphs”, Discrete Appl. Math., 161:1-2 (2013), 311–314 http://hog.grinvin.org | DOI | MR | Zbl
[5] W. P. Thurston, “Shapes of polyhedra and triangulations of the sphere”, The Epstein birthday schrift, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998, 511–549 | DOI | MR | Zbl
[6] G. Brinkmann, A. W. M. Dress, “A constructive enumeration of fullerenes”, J. Algorithms, 23:2 (1997), 345–358 | DOI | MR
[7] G. Brinkmann, J. Goedgebeur, B. D. McKay, “The generation of fullerenes”, J. Chem. Inf. Model., 52:11 (2012), 2910–2918 | DOI
[8] V. Andova, F. Kardoš, R. Škrekovski, “Mathematical aspects of fullerenes”, Ars Math. Contemp., 11:2 (2016), 353–379 | MR | Zbl
[9] E. A. Kats, Fullereny, uglerodnye nanotrubki i nanoklastery. Rodoslovnaya form i idei, “Librokom”, M., 2014, 296 pp.
[10] F. Kardoš, A computer-assisted proof of a Barnette's conjecture: not only fullerene graphs are hamiltonian, arXiv: 1409.2440
[11] Feifei Fan, Jun Ma, Xiangjun Wang, $B$-Rigidity of flag $2$-spheres without $4$-belt, arXiv: 1511.03624
[12] Feifei Fan, Xiangjun Wang, “On the cohomology of moment-angle complexes associated to Gorenstein* complexes”, arXiv: 1508.00159
[13] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017) | DOI | DOI | MR
[14] V. M. Buchstaber, N. Erokhovets, Construction of fullerenes, arXiv: 1510.02948
[15] V. M. Buchstaber, N. Yu. Erokhovets, Fullerenes, polytopes and toric topology, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., World Sci. Publ., River Edge, NJ, 2017, 117 pp.; arXiv: 1609.02949
[16] V. M. Buchstaber, N. Yu. Erokhovets, “Finite sets of operations sufficient to construct any fullerene from $C_{20}$”, Struct. Chem., 28:1 (2017), 225–234 | DOI
[17] N. Yu. Erokhovets, “$k$-poyasa i rebernye tsikly trekhmernykh prostykh mnogogrannikov s ne bolee chem shestiugolnymi granyami”, Dalnevost. matem. zhurn., 15:2 (2015), 197–213 | MR | Zbl
[18] E. M. Andreev, “On convex polyhedra in Lobačevskiĭ spaces”, Math. USSR-Sb., 10:3 (1970), 413–440 | DOI | MR | Zbl
[19] E. M. Andreev, “On convex polyhedra of finite volume in Lobačevskiĭ space”, Math. USSR-Sb., 12:2 (1970), 255–259 | DOI | MR | Zbl
[20] M. Deza, M. Dutour Sikirić, M. I. Shtogrin, “Fullerenes and disk-fullerenes”, Russian Math. Surveys, 68:4 (2013), 665–720 | DOI | DOI | MR | Zbl
[21] J. Bornhöft, G. Brinkmann, J. Greinus, “Pentagon-hexagon-patches with short boundaries”, European J. Combin., 24:5 (2003), 517–529 | DOI | MR | Zbl
[22] G. Brinkmann, U. v. Nathusius, A. H. R. Palser, “A constructive enumeration of nanotube caps”, Discrete Appl. Math., 116:1-2 (2002), 55–71 | DOI | MR | Zbl
[23] G. Brinkmann, P. W. Fowler, D. E. Manolopoulos, A. H. R. Palser, “A census of nanotube caps”, Chem. Phys. Lett., 315:5-6 (1999), 335–347 | DOI
[24] B. Grünbaum, G. C. Shephard, Tilings and patterns, Dover Books on Math., 2nd ed., Dover Publications, Inc., Mineola, NY, 2016, 720 pp.
[25] E. A. Lord, A. L. Mackay, S. Ranganathan, New geometries for new materials, Cambridge Univ. Press, Cambridge, 2006, x+238 pp. | Zbl
[26] V. M. Buchstaber, T. E. Panov, “On manifolds defined by 4-colourings of simple 3-polytopes”, Russian Math. Surveys, 71:6 (2016), 1137–1139 | DOI | DOI | MR | Zbl
[27] T. Došlić, “On lower bounds of number of perfect matchings in fullerene graphs”, J. Math. Chem., 24:4 (1998), 359–364 | DOI | MR | Zbl
[28] T. Došlić, “Cyclical edge-connectivity of fullerene graphs and $(k,6)$-cages”, J. Math. Chem., 33:2 (2003), 103–112 | DOI | MR | Zbl
[29] V. M. Buchstaber, N. Yu. Erokhovets, “Truncations of simple polytopes and applications”, Proc. Steklov Inst. Math., 289 (2015), 104–133 | DOI | DOI | MR | Zbl
[30] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR | Zbl
[31] A. V. Pogorelov, “A regular partition of Lobachevskian space”, Math. Notes, 1:1 (1967), 3–5 | DOI | MR | Zbl
[32] A. Yu. Vesnin, “Pryamougolnye mnogogranniki i trekhmernye giperbolicheskie mnogoobraziya”, UMN, 72:2(434) (2017), 147–190 | DOI | MR
[33] T. Inoue, “Organizing volumes of right-angled hyperbolic polyhedra”, Algebr. Geom. Topol., 8:3 (2008), 1523–1565 | DOI | MR | Zbl
[34] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Siberian Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl
[35] A. Yu. Vesnin, “Volumes of hyperbolic Löbell 3-manifolds”, Math. Notes, 64:1 (1998), 15–19 | DOI | DOI | MR | Zbl
[36] T. Inoue, The 825 smallest right-angled hyperbolic polyhedra, arXiv: 1512.01761
[37] G. Brinkmann, J. E. Graver, C. Justus, “Numbers of faces in disordered patches”, J. Math. Chem., 45:2 (2009), 263–278 | DOI | MR | Zbl
[38] M. Hasheminezhad, H. Fleischner, B. D. McKay, “A universal set of growth operations for fullerenes”, Chem. Phys. Lett., 464:1-3 (2008), 118–121 | DOI
[39] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | DOI | MR | Zbl
[40] B. Grünbaum, Convex polytopes, Grad. Texts in Math., 221, 2nd ed., Springer-Verlag, New York, 2003, xvi+468 pp. | DOI | MR | Zbl
[41] V. Eberhard, Zur Morphologie der Polyeder, B. G. Teubner, Leipzig, 1891, iv+245 pp. | Zbl
[42] V. Schlegel, “Theorie der homogen zusammengesetzten Raumgebilde”, Nova Acta, Ksl. Leop.-Carol. Deutschen Akademie der Naturforscher, 44:4 (1883), 343–459 | Zbl
[43] B. Grünbaum, T. S. Motzkin, “The number of hexagons and the simplicity of geodesics on certain polyhedra”, Canad. J. Math., 15 (1963), 744–751 | DOI | MR | Zbl
[44] H. W. Kroto, “The stability of the fullerenes $C_n$, with $n=$24, 28, 32, 36, 50, 60 and 70”, Nature, 329 (1987), 529–531 | DOI
[45] J. Cioslowski, “Note on the asymptotic isomer count of large fullerenes”, J. Math. Chem., 52:1 (2014), 1–5 | DOI | MR | Zbl
[46] C. Jordan, Cours d'analyse de l'École polytechnique, v. III, Calcul intégral: équations différentielles, Gauthier-Villars, Paris, 1887, 587–594 | Zbl
[47] A. Schoenflies, “Beiträge zur Theorie der Punktmengen. III”, Math. Ann., 62:2 (1906), 286–328 | DOI | MR | Zbl
[48] A. F. Filippov, “Elementarnoe dokazatelstvo teoremy Zhordana”, UMN, 5:5(39) (1950), 173–176 | MR | Zbl
[49] B. Mohar, C. Thomassen, Graphs on surfaces, Johns Hopkins Stud. Math. Sci., John Hopkins Univ. Press, Baltimore, MD, 2001, xii+291 pp. | MR | Zbl
[50] L. Siebenmann, “The Osgood–Schoenflies theorem revisited”, Russian Math. Surveys, 60:4 (2005), 645–672 | DOI | DOI | MR | Zbl
[51] R. Diestel, Graph theory, Grad. Texts in Math., 173, 2nd ed., Springer-Verlag, New York, 2000, xiv+313 pp. | MR | Zbl
[52] J. A. Bondy, U. S. R. Murty, Graph theory, Grad. Texts in Math., 244, Springer, New York, 2008, xii+651 pp. | MR | Zbl
[53] I. Fáry, “On straight-line representation of planar graphs”, Acta Univ. Szeged. Sect. Sci. Math., 11 (1948), 229–233 | MR | Zbl
[54] F. Kardoš, R. Škrekovski, “Cyclic edge-cuts in fullerene graphs”, J. Math. Chem., 44:1 (2008), 121–132 | DOI | MR | Zbl
[55] F. Kardoš, M. Krnc, B. Lužar, R. Škrekovski, “Cyclic $7$-edge-cuts in fullerene graphs”, J. Math. Chem., 47:2 (2010), 771–789 | DOI | MR | Zbl
[56] V. M. Buchstaber, V. D. Volodin, “Combinatorial $2$-truncated cubes and applications”, Associahedra, Tamari lattices, and related structures, Tamari memorial Festschrift, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, 161–186 | DOI | MR | Zbl
[57] V. M. Bukhshtaber, N. Yu. Erokhovets, T. E. Panov, “Algebra i kombinatorika vypuklykh mnogogrannikov”, Pril. k kn.: G. M. Tsigler, Teoriya mnogogrannikov, MTsNMO, M., 2014, 426–521
[58] M. Endo, H. W. Kroto, “Formation of carbon nanofibers”, J. Phys. Chem., 96:17 (1992), 6941–6944 | DOI
[59] A. J. Stone, D. J. Wales, “Theoretical studies of icosahedral $C_{60}$ and some related species”, Chem. Phys. Lett., 128:5-6 (1986), 501–503 | DOI
[60] M. Brückner, Vielecke und Vielflache. Theorie und Geschichte, B. G. Teubner, Leipzig, 1900, viii+227 pp. | Zbl
[61] E. S. Fedorov, “Osnovaniya morfologii i sistematiki mnogogrannikov”, Zap. Imper. S.-Peterb. mineralog. o-va Cer. 2, 30 (1893), 241–341 | Zbl
[62] V. D. Volodin, “Combinatorics of flag simplicial 3-polytopes”, Russian Math. Surveys, 70:1 (2015), 168–170 ; arXiv: 1212.4696 | DOI | DOI | MR | Zbl
[63] K. Kutnar, D. Marušič, “On cyclic edge-connectivity of fullerenes”, Discrete Appl. Math., 156:10 (2008), 1661–1669 | DOI | MR | Zbl
[64] J. Goedgebeur, B. D. McKay, “Recursive generation of IPR fullerenes”, J. Math. Chem., 53:8 (2015), 1702–1724 | DOI | MR | Zbl
[65] Bobo Hua, Yanhui Su, Total curvature of planar graphs with nonnegative combinatorial curvature, arXiv: 1703.04119v1
[66] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl
[67] B. Grünbaum, “Some analogues of Eberhard's theorem on convex polytopes”, Israel J. Math., 6:4 (1968), 398–411 | DOI | MR | Zbl