On free groups in the infinitely based varieties of S.~I.~Adian
Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 889-900.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the free groups in varieties defined by an arbitrary set of identities in a well-known infinite independent system of identities in two variables constructed by S. I. Adian to solve the finite basis problem in group theory. We prove that the centralizer of any non-identity element in a relatively free group in any of the varieties under consideration is cyclic, and for every $m>1$ the set of all non-isomorphic free groups of rank $m$ in these varieties is of the cardinality of the continuum. All these groups have trivial centre, all their abelian subgroups are cyclic, and all their non-trivial normal subgroups are infinite. For any free group $\Gamma$ in any of these varieties, we also obtain a description of the automorphisms of the semigroup $\operatorname{End}(\Gamma)$, answering a question posed by Plotkin in 2000. In particular, we prove that the automorphism group of any such $\operatorname{End}(\Gamma)$ is canonically embedded in the group $\operatorname{Aut}(\operatorname{Aut}(\Gamma))$.
Keywords: infinitely based variety, self-centralizing subgroup, semigroup of endomorphisms, free Burnside group.
Mots-clés : automorphism group
@article{IM2_2017_81_5_a0,
     author = {S. I. Adian and V. S. Atabekyan},
     title = {On free groups in the infinitely based varieties of {S.~I.~Adian}},
     journal = {Izvestiya. Mathematics },
     pages = {889--900},
     publisher = {mathdoc},
     volume = {81},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - V. S. Atabekyan
TI  - On free groups in the infinitely based varieties of S.~I.~Adian
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 889
EP  - 900
VL  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a0/
LA  - en
ID  - IM2_2017_81_5_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A V. S. Atabekyan
%T On free groups in the infinitely based varieties of S.~I.~Adian
%J Izvestiya. Mathematics 
%D 2017
%P 889-900
%V 81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a0/
%G en
%F IM2_2017_81_5_a0
S. I. Adian; V. S. Atabekyan. On free groups in the infinitely based varieties of S.~I.~Adian. Izvestiya. Mathematics , Tome 81 (2017) no. 5, pp. 889-900. http://geodesic.mathdoc.fr/item/IM2_2017_81_5_a0/

[1] S. I. Adyan, “Infinite irreducible systems of group identities”, Soviet Math. Dokl., 11 (1970), 113–115 | MR | Zbl

[2] S. I. Adjan, “Infinite irreducible systems of group identities”, Math. USSR-Izv., 4:4 (1970), 721–739 | DOI | MR | Zbl

[3] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979, xi+311 pp. | MR | MR | Zbl | Zbl

[4] Yu. G. Kleiman, “On identities in groups”, Trans. Mosc. Math. Soc., 1983:2 (1983), 63–110 | MR | Zbl

[5] L. Bowen, R. Grigorchuk, R. Kravchenko, “Characteristic random subgroups of geometric groups and free abelian groups of infinite rank”, Trans. Amer. Math. Soc, 369:2 (2017), 755–781 | DOI | MR | Zbl

[6] S. I. Adian, “New estimates of odd exponents of infinite Burnside groups”, Proc. Steklov Inst. Math., 289 (2015), 33–71 | DOI | DOI | MR | Zbl

[7] S. I. Adian, V. S. Atabekyan, “Periodic products of groups”, J. Contemp. Math. Anal., 52:3 (2017), 111–117 | DOI

[8] B. I. Plotkin, Seven lectures on the universal algebraic geometry, Preprint 1-2000, Institute of Mathematics, Hebrew Univ., Jerusalem, 2000, 87 pp., arXiv: math/0204245

[9] V. S. Atabekyan, “The groups of automorphisms are complete for free Burnside groups of odd exponents $n\ge 1003$”, Internat. J. Algebra Comput., 23:6 (2013), 1485–1496 | DOI | MR | Zbl

[10] V. S. Atabekyan, “The automorphisms of endomorphism semigroups of free Burnside groups”, Internat. J. Algebra Comput., 25:4 (2015), 669–674 | DOI | MR | Zbl

[11] J. L. Dyer, E. Formanek, “The automorphism group of a free group is complete”, J. London Math. Soc. (2), 11:2 (1975), 181–190 | DOI | MR | Zbl

[12] E. Formanek, “A question of B. Plotkin about the semigroup of endomorphisms of a free group”, Proc. Amer. Math. Soc., 130:4 (2002), 935–937 | DOI | MR | Zbl

[13] G. Mashevitzky, B. M. Schein, “Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup”, Proc. Amer. Math. Soc., 131:6 (2003), 1655–1660 | DOI | MR | Zbl