A criterion for semiampleness
Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 827-887

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into a polarized pair and all fine subdiagrams which are closed under inclusions and under skrepas have a polarized colimit. Such diagrams are called sobors, and their arrows are inclusions and skrepas. The main application is a criterion for the semiampleness of a nef invertible sheaf on a complete algebraic space in terms of a sobor.
Keywords: skrepa, big, nef, semiampleness.
Mots-clés : sobor, colimit
@article{IM2_2017_81_4_a5,
     author = {V. V. Shokurov},
     title = {A criterion for semiampleness},
     journal = {Izvestiya. Mathematics },
     pages = {827--887},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a5/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - A criterion for semiampleness
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 827
EP  - 887
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a5/
LA  - en
ID  - IM2_2017_81_4_a5
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T A criterion for semiampleness
%J Izvestiya. Mathematics 
%D 2017
%P 827-887
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a5/
%G en
%F IM2_2017_81_4_a5
V. V. Shokurov. A criterion for semiampleness. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 827-887. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a5/