Grothendieck--Verdier duality patterns in quantum algebra
Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 818-826.

Voir la notice de l'article provenant de la source Math-Net.Ru

After a brief survey of the basic definitions of Grothendieck–Verdier categories and dualities, I consider in this context dualities introduced earlier in the categories of quadratic algebras and operads, largely motivated by the theory of quantum groups. Finally, I argue that Dubrovin's ‘almost duality’ in the theory of Frobenius manifolds and quantum cohomology must also fit a (possibly extended) version of Grothendieck–Verdier duality.
Keywords: duality, $F$-manifolds, quadratic algebras, quadratic operads.
@article{IM2_2017_81_4_a4,
     author = {Yu. I. Manin},
     title = {Grothendieck--Verdier duality patterns in quantum algebra},
     journal = {Izvestiya. Mathematics },
     pages = {818--826},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a4/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Grothendieck--Verdier duality patterns in quantum algebra
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 818
EP  - 826
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a4/
LA  - en
ID  - IM2_2017_81_4_a4
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Grothendieck--Verdier duality patterns in quantum algebra
%J Izvestiya. Mathematics 
%D 2017
%P 818-826
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a4/
%G en
%F IM2_2017_81_4_a4
Yu. I. Manin. Grothendieck--Verdier duality patterns in quantum algebra. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 818-826. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a4/

[1] Yu. I. Manin, Quantum groups and non-commutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988, vi+91 pp. | MR | Zbl

[2] M. Boyarchenko, V. Drinfeld, “A duality formalism in the spirit of Grothendieck and Verdier”, Quantum Topol., 4:4 (2013), 447–489 | DOI | MR | Zbl

[3] R. Berger, M. Dubois-Violette, M. Wambst, “Homogeneous algebras”, J. Algebra, 261:1 (2003), 172–185 | DOI | MR | Zbl

[4] V. Ginzburg, M. Kapranov, “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 ; “Erratum”, Duke Math. J., 80:1 (1995), 293 | DOI | MR | Zbl | DOI | MR | Zbl

[5] B. Dubrovin, “On almost duality for Frobenius manifolds”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Adv. Math. Sci., 55, Amer. Math. Soc., Providence, RI, 2004, 75–132 ; arXiv: math/0307374 | DOI | MR | Zbl

[6] J.-L. Loday, B. Vallette, Algebraic operads, Grundlehren Math. Wiss., 346, Springer, Heidelberg, 2012, xxiv+634 pp. | DOI | MR | Zbl

[7] M. Barr, *-autonomous categories, Lecture Notes in Math., 752, Springer, Berlin, 1979, iii+140 pp. | DOI | MR | Zbl

[8] M. Barr, “ *-autonomous categories, revisited”, J. Pure Appl. Algebra, 111:1-3 (1996), 1–20 | DOI | MR | Zbl

[9] B. Day, R. Street, “Quantum categories, star autonomy, and quantum groupoids”, Galois theory, Hopf algebras, and semiabelian categories, Fields Inst. Commun., 43, Amer. Math. Soc., Providence, RI, 2004, 187–225 | MR | Zbl

[10] D. V. Borisov, Yu. I. Manin, “Generalized operads and their inner cohomomorphisms”, Geometry and dynamics of groups and spaces, Progr. Math., 265, Birkhäuser, Basel, 2008, 247–308 | DOI | MR | Zbl

[11] B. Vallette, “Manin products, Koszul duality, Loday algebras and Deligne conjecture”, J. Reine Angew. Math., 2008:620 (2008), 105–164 ; arXiv: math/0609002 | DOI | MR | Zbl

[12] C. Hertling, Yu. Manin, “Weak Frobenius manifolds”, Internat. Math. Res. Notices, 1999:6 (1999), 277–286 ; arXiv: math/9810132 | DOI | MR | Zbl

[13] C. Hertling, Yu. I. Manin, C. Teleman, “An update on semisimple quantum cohomology and $F$-manifolds”, Mnogomernaya algebraicheskaya geometriya, Sbornik statei. Posvyaschaetsya pamyati chlena-korrespondenta RAN Vasiliya Alekseevicha Iskovskikh, Tr. MIAN, 264, MAIK, M., 2009, 69–76 ; Proc. Steklov Inst. Math., 264 (2009), 62–69 ; arXiv: 0803.2769 | MR | Zbl | DOI

[14] C. Hertling, Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Math., 151, Cambridge Univ. Press, Cambridge, 2002, x+270 pp. | DOI | MR | Zbl

[15] Yu. I Manin, “$F$-manifolds with flat structure and Dubrovin's duality”, Adv. Math., 198:1 (2005), 5–26 ; arXiv: math/0402451 | DOI | MR | Zbl

[16] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[17] V. Dotsenko, S. Shadrin, B. Vallette, “De Rham cohomology and homotopy Frobenius manifolds”, J. Eur. Math. Soc. (JEMS), 17:3 (2015), 535–547 ; arXiv: 1203.5077 | DOI | MR | Zbl

[18] S. A. Merkulov, “Operads, deformation theory and $F$-manifolds”, Frobenius manifolds. Quantum cohomology and singularities, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004, 213–251 ; arXiv: math/0210478 | DOI | MR | Zbl

[19] L. David, I. A. B. Strachan, “Dubrovin's duality for $F$-manifolds with eventual identities”, Adv. Math., 226:5 (2011), 4031–4060 | DOI | MR | Zbl