Many-circuit canard trajectories and their applications
Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 771-817

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the case when two distinct curves of slow motion in a two-dimensional relaxation system with cylindrical phase space intersect each other in a generic way. We establish that the so-called canard trajectories can arise in this situation. They differ from ordinary canard trajectories in the following respect. The passage from the stable curve of slow motion to the unstable one is performed via finitely many asymptotically quick rotations of the phase point around the axis of the cylinder. The results obtained are used in the asymptotic analysis of eigenvalues of a boundary-value problem of Sturm–Liouville type for a singularly perturbed linear Schrödinger equation.
Keywords: singularly perturbed equation, many-circuit canard trajectories, asymptotics, boundary-value problems of Sturm–Liouville type.
@article{IM2_2017_81_4_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Many-circuit canard trajectories and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {771--817},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Many-circuit canard trajectories and their applications
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 771
EP  - 817
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/
LA  - en
ID  - IM2_2017_81_4_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Many-circuit canard trajectories and their applications
%J Izvestiya. Mathematics 
%D 2017
%P 771-817
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/
%G en
%F IM2_2017_81_4_a3
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Many-circuit canard trajectories and their applications. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 771-817. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/