Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_4_a3, author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov}, title = {Many-circuit canard trajectories and their applications}, journal = {Izvestiya. Mathematics }, pages = {771--817}, publisher = {mathdoc}, volume = {81}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/} }
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Many-circuit canard trajectories and their applications JO - Izvestiya. Mathematics PY - 2017 SP - 771 EP - 817 VL - 81 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/ LA - en ID - IM2_2017_81_4_a3 ER -
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Many-circuit canard trajectories and their applications. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 771-817. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/
[1] L. S. Pontryagin, E. F. Mischenko, “Periodicheskie resheniya sistem differentsialnykh uravnenii, blizkie k razryvnym”, v st. “Yubileinaya nauchnaya sessiya na mekhaniko-matematicheskom fakultete MGU”, UMN, 10:3(65) (1955), 193
[2] E. F. Mischenko, L. S. Pontryagin, “Periodicheskie resheniya sistem differentsialnykh uravnenii, blizkie k razryvnym”, Dokl. AN SSSR, 102:5 (1955), 889–891 | MR | Zbl
[3] L. S. Pontryagin, “Sistemy obyknovennykh differentsialnykh uravnenii s malym parametrom pri vysshikh proizvodnykh”, Trudy 3-go Vsesoyuznogo matematicheskogo s'ezda, v. 3, Izd-vo AN SSSR, M., 1958, 570–577 | Zbl
[4] L. S. Pontryagin, “Asymptotic behavior of the solutions of systems of differential equations with a small parameter in the higher derivatives”, Amer. Math. Soc. Transl. (2), 18, Amer. Math. Soc., Providence, R.I., 1961, 295–319 | MR | MR | Zbl | Zbl
[5] E. F. Mishchenko, “Asymptotic calculation of periodic solutions of systems of differential equations containing small parameters in the derivatives”, Amer. Math. Soc. Transl. (2), 18, Amer. Math. Soc., Providence, R.I., 1961, 199–230 | MR | MR | Zbl | Zbl
[6] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980, x+228 pp. | DOI | MR | MR | Zbl | Zbl
[7] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994, xii+281 pp. | MR | MR | Zbl | Zbl
[8] A. K. Zvonkin, M. A. Shubin, “Non-standard analysis and singular perturbations of ordinary differential equations”, Russian Math. Surveys, 39:2 (1984), 69–131 | DOI | MR | Zbl
[9] W. Eckhaus, “Relaxation oscillations including a standard chase on French ducks”, Asymptotic analysis II, Lecture Notes in Math., 985, Springer, Berlin, 1983, 449–494 | DOI | MR | Zbl
[10] V. A. Sobolev, E. A. Shchepakina, “Duck trajectories in a problem of combustion theory”, Differ. Equ., 32:9 (1996), 1177–1186 | MR | Zbl
[11] V. A. Sobolev, E. A. Schepakina, “Integralnye poverkhnosti so smenoi ustoichivosti i traektorii-utki”, Izv. RAEN. Ser. MMMIU, 1:3 (1997), 176–187
[12] M. Diener, “Nessie et les canards”, Publ. IRMA, 76, IRMA, Strasbourg, 1979, 17 pp.
[13] M. Diener, Etude générique des canard, Thése, IRMA, Strasbourg, 1981, 94 pp.
[14] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Solution to singularly perturbed boundary value problems by the duck hunting method”, Proc. Steklov Inst. Math., 224 (1999), 169–188 | MR | Zbl
[15] V. F. Butuzov, N. N. Nefedov, K. R. Schneider, “Singularly perturbed problems in case of exchange of stabilities”, J. Math. Sci. (N. Y.), 121:1 (2004), 1973–2079 | DOI | MR | Zbl
[16] A. M. Krasnosel'skii, E. O'Grady, A. V. Pokrovskii, D. I. Rachinskii, “Periodic canard trajectories with multiple segments following the unstable part of critical manifold”, Discrete Contin. Dyn. Syst. Ser. B, 18:2 (2013), 467–482 | DOI | MR | Zbl
[17] E. Shchepakina, V. Sobolev, M. P. Mortelli, Singular perturbations. Introduction to system order reduction methods with applications, Lecture Notes in Math., 2114, Springer, Cham, 2014, xiv+212 pp. | DOI | MR | Zbl
[18] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Monogr. Textbooks Pure Appl. Math., Noordhoff International Publishing, Leyden, 1974, xxvi+485 pp. | MR | MR | Zbl | Zbl
[19] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR | Zbl
[20] Handbook of mathematical functions, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz, I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl
[21] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., New York–Toronto–London, 1955, xii+429 pp. | MR | Zbl
[22] Ju. S. Kolesov, V. F. Chaplygin, “The nonoscillation of the solutions of singularly perturbed equations of second order”, Soviet Math. Dokl., 12 (1971), 1268–1271 | MR | Zbl
[23] S. A. Kaschenko, “Predelnye znacheniya sobstvennykh chisel pervoi kraevoi zadachi dlya singulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Vestn. Yarosl. gos. un-ta, 10, YarGU, Yaroslavl, 1974, 3–39
[24] S. A. Kaschenko, “Asimptotika sobstvennykh chisel pervoi kraevoi zadachi dlya singulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Vestn. Yarosl. gos. un-ta, 10, YarGU, Yaroslavl, 1974, 40–64
[25] S. A. Kaschenko, Ustoichivost uravnenii vtorogo poryadka s periodicheskimi koeffitsientami, Uchebnoe posobie, YarGU, Yaroslavl, 2005, 211 pp.
[26] S. A. Kaschenko, “Asimptotika sobstvennykh chisel pervoi kraevoi zadachi dlya singulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Model. i analiz inform. sistem, 22:5 (2015), 682–710 | DOI