Many-circuit canard trajectories and their applications
Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 771-817.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the case when two distinct curves of slow motion in a two-dimensional relaxation system with cylindrical phase space intersect each other in a generic way. We establish that the so-called canard trajectories can arise in this situation. They differ from ordinary canard trajectories in the following respect. The passage from the stable curve of slow motion to the unstable one is performed via finitely many asymptotically quick rotations of the phase point around the axis of the cylinder. The results obtained are used in the asymptotic analysis of eigenvalues of a boundary-value problem of Sturm–Liouville type for a singularly perturbed linear Schrödinger equation.
Keywords: singularly perturbed equation, many-circuit canard trajectories, asymptotics, boundary-value problems of Sturm–Liouville type.
@article{IM2_2017_81_4_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Many-circuit canard trajectories and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {771--817},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Many-circuit canard trajectories and their applications
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 771
EP  - 817
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/
LA  - en
ID  - IM2_2017_81_4_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Many-circuit canard trajectories and their applications
%J Izvestiya. Mathematics 
%D 2017
%P 771-817
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/
%G en
%F IM2_2017_81_4_a3
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Many-circuit canard trajectories and their applications. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 771-817. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a3/

[1] L. S. Pontryagin, E. F. Mischenko, “Periodicheskie resheniya sistem differentsialnykh uravnenii, blizkie k razryvnym”, v st. “Yubileinaya nauchnaya sessiya na mekhaniko-matematicheskom fakultete MGU”, UMN, 10:3(65) (1955), 193

[2] E. F. Mischenko, L. S. Pontryagin, “Periodicheskie resheniya sistem differentsialnykh uravnenii, blizkie k razryvnym”, Dokl. AN SSSR, 102:5 (1955), 889–891 | MR | Zbl

[3] L. S. Pontryagin, “Sistemy obyknovennykh differentsialnykh uravnenii s malym parametrom pri vysshikh proizvodnykh”, Trudy 3-go Vsesoyuznogo matematicheskogo s'ezda, v. 3, Izd-vo AN SSSR, M., 1958, 570–577 | Zbl

[4] L. S. Pontryagin, “Asymptotic behavior of the solutions of systems of differential equations with a small parameter in the higher derivatives”, Amer. Math. Soc. Transl. (2), 18, Amer. Math. Soc., Providence, R.I., 1961, 295–319 | MR | MR | Zbl | Zbl

[5] E. F. Mishchenko, “Asymptotic calculation of periodic solutions of systems of differential equations containing small parameters in the derivatives”, Amer. Math. Soc. Transl. (2), 18, Amer. Math. Soc., Providence, R.I., 1961, 199–230 | MR | MR | Zbl | Zbl

[6] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980, x+228 pp. | DOI | MR | MR | Zbl | Zbl

[7] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994, xii+281 pp. | MR | MR | Zbl | Zbl

[8] A. K. Zvonkin, M. A. Shubin, “Non-standard analysis and singular perturbations of ordinary differential equations”, Russian Math. Surveys, 39:2 (1984), 69–131 | DOI | MR | Zbl

[9] W. Eckhaus, “Relaxation oscillations including a standard chase on French ducks”, Asymptotic analysis II, Lecture Notes in Math., 985, Springer, Berlin, 1983, 449–494 | DOI | MR | Zbl

[10] V. A. Sobolev, E. A. Shchepakina, “Duck trajectories in a problem of combustion theory”, Differ. Equ., 32:9 (1996), 1177–1186 | MR | Zbl

[11] V. A. Sobolev, E. A. Schepakina, “Integralnye poverkhnosti so smenoi ustoichivosti i traektorii-utki”, Izv. RAEN. Ser. MMMIU, 1:3 (1997), 176–187

[12] M. Diener, “Nessie et les canards”, Publ. IRMA, 76, IRMA, Strasbourg, 1979, 17 pp.

[13] M. Diener, Etude générique des canard, Thése, IRMA, Strasbourg, 1981, 94 pp.

[14] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Solution to singularly perturbed boundary value problems by the duck hunting method”, Proc. Steklov Inst. Math., 224 (1999), 169–188 | MR | Zbl

[15] V. F. Butuzov, N. N. Nefedov, K. R. Schneider, “Singularly perturbed problems in case of exchange of stabilities”, J. Math. Sci. (N. Y.), 121:1 (2004), 1973–2079 | DOI | MR | Zbl

[16] A. M. Krasnosel'skii, E. O'Grady, A. V. Pokrovskii, D. I. Rachinskii, “Periodic canard trajectories with multiple segments following the unstable part of critical manifold”, Discrete Contin. Dyn. Syst. Ser. B, 18:2 (2013), 467–482 | DOI | MR | Zbl

[17] E. Shchepakina, V. Sobolev, M. P. Mortelli, Singular perturbations. Introduction to system order reduction methods with applications, Lecture Notes in Math., 2114, Springer, Cham, 2014, xiv+212 pp. | DOI | MR | Zbl

[18] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Monogr. Textbooks Pure Appl. Math., Noordhoff International Publishing, Leyden, 1974, xxvi+485 pp. | MR | MR | Zbl | Zbl

[19] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR | Zbl

[20] Handbook of mathematical functions, National Bureau of Standards Applied Mathematics Series, 55, eds. M. Abramowitz, I. A. Stegun, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl

[21] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., New York–Toronto–London, 1955, xii+429 pp. | MR | Zbl

[22] Ju. S. Kolesov, V. F. Chaplygin, “The nonoscillation of the solutions of singularly perturbed equations of second order”, Soviet Math. Dokl., 12 (1971), 1268–1271 | MR | Zbl

[23] S. A. Kaschenko, “Predelnye znacheniya sobstvennykh chisel pervoi kraevoi zadachi dlya singulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Vestn. Yarosl. gos. un-ta, 10, YarGU, Yaroslavl, 1974, 3–39

[24] S. A. Kaschenko, “Asimptotika sobstvennykh chisel pervoi kraevoi zadachi dlya singulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Vestn. Yarosl. gos. un-ta, 10, YarGU, Yaroslavl, 1974, 40–64

[25] S. A. Kaschenko, Ustoichivost uravnenii vtorogo poryadka s periodicheskimi koeffitsientami, Uchebnoe posobie, YarGU, Yaroslavl, 2005, 211 pp.

[26] S. A. Kaschenko, “Asimptotika sobstvennykh chisel pervoi kraevoi zadachi dlya singulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Model. i analiz inform. sistem, 22:5 (2015), 682–710 | DOI