Universal adic approximation, invariant measures and scaled entropy
Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 734-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define an infinite graded graph of ordered pairs and a canonical action of the group $\mathbb{Z}$ (the adic action) and of the infinite sum of groups of order two $\mathcal{D}=\sum_1^{\infty} \mathbb{Z}/2\mathbb{Z}$ on the path space of the graph. It is proved that these actions are universal for both groups in the following sense: every ergodic action of these groups with invariant measure and binomial generator, multiplied by a special action (the ‘odometer’), is metrically isomorphic to the canonical adic action on the path space of the graph with a central measure. We consider a series of related problems.
Keywords: graph of ordered pairs, universal action, scaled entropy.
Mots-clés : adic transformation
@article{IM2_2017_81_4_a2,
     author = {A. M. Vershik and P. B. Zatitskii},
     title = {Universal adic approximation, invariant measures and scaled entropy},
     journal = {Izvestiya. Mathematics },
     pages = {734--770},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - P. B. Zatitskii
TI  - Universal adic approximation, invariant measures and scaled entropy
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 734
EP  - 770
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a2/
LA  - en
ID  - IM2_2017_81_4_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A P. B. Zatitskii
%T Universal adic approximation, invariant measures and scaled entropy
%J Izvestiya. Mathematics 
%D 2017
%P 734-770
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a2/
%G en
%F IM2_2017_81_4_a2
A. M. Vershik; P. B. Zatitskii. Universal adic approximation, invariant measures and scaled entropy. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 734-770. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a2/

[1] A. M. Vershik, “Uniform algebraic approximation of shift and multiplication operators”, Soviet Math. Dokl., 24:1 (1981), 97–100 | MR | Zbl

[2] A. M. Vershik, “A theorem on the Markov periodic approximation in ergodic theory”, J. Soviet Math., 28:5 (1985), 667–674 | DOI | MR | Zbl

[3] R. Dougherty, S. Jackson, A. S. Kechris, “The structure of hyperfinite Borel equivalence relations”, Trans. Amer. Math. Soc., 341:1 (1994), 193–225 | DOI | MR | Zbl

[4] A. M. Vershik, “Asymptotic theory of path spaces of graded graphs and its applications”, Jpn. J. Math., 11:2 (2016), 151–218 | DOI | MR | Zbl

[5] A. M. Vershik, “Informatsiya, entropiya, dinamika”, Matematika KhKh veka. Vzglyad iz Peterburga, MTsMNO, M., 2010, 47–76

[6] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl

[7] A. M. Vershik, “Decreasing sequences of measurable partitions and their applications”, Soviet Math. Dokl., 11 (1970), 1007–1011 | MR | Zbl

[8] A. M. Vershik, “Continuum of pairwise nonisomorphic diadic sequences”, Funct. Anal. Appl., 5:3 (1971), 182–184 | DOI | MR | Zbl

[9] A. M. Vershik, “Theory of decreasing sequences of measurable partitions”, St. Petersburg Math. J., 6:4 (1995), 705–761 | MR | Zbl

[10] A. M. Vershik, A. D. Gorbulsky, “Scaled entropy of filtrations of $\sigma$-fields”, Theory Probab. Appl., 52:3 (2008), 493–508 | DOI | DOI | MR | Zbl

[11] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | DOI | MR | Zbl

[12] P. B. Zatitskiy, “On a scaling entropy sequence of a dynamical system”, Funct. Anal. Appl., 48:4 (2014), 291–294 | DOI | DOI | MR | Zbl

[13] P. B. Zatitskiy, “Scaling entropy sequence: invariance and examples”, J. Math. Sci. (N. Y.), 209:6 (2015), 890–909 | DOI | MR | Zbl

[14] A. G. Kushnirenko, “On metric invariants of entropy type”, Russian Math. Surveys, 22:5 (1967), 53–61 | DOI | MR | Zbl

[15] J. Feldman, “New $K$-automorphisms and a problem of Kakutani”, Israel J. Math., 24:1 (1976), 16–38 | DOI | MR | Zbl

[16] M. Ratner, “Horocycle flows are loosely Bernoulli”, Israel J. Math., 31:2 (1978), 122–132 | DOI | MR | Zbl

[17] A. Katok, J.-P. Thouvenot, “Slow entropy type invariants and smooth realization of commuting measure-preserving transformations”, Ann. Inst. H. Poincaré Probab. Statist., 33:3 (1997), 323–338 | DOI | MR | Zbl

[18] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel J. Math., 100 (1997), 189–207 | DOI | MR | Zbl

[19] S. Ferenczi, K. K. Park, “Entropy dimensions and a class of constructive examples”, Discrete Contin. Dyn. Syst., 17:1 (2007), 133–141 | DOI | MR | Zbl

[20] P. B. Zatitskiy, F. V. Petrov, “On the subadditivity of a scaling entropy sequence”, J. Math. Sci. (N. Y.), 215:6 (2016), 734–737 | DOI | MR | Zbl

[21] A. M. Vershik, S. V. Kerov, “Locally semisimple algebras. Combinatorial theory and the $K_0$-functor”, J. Soviet Math., 38:2 (1987), 1701–1733 | DOI | MR | Zbl

[22] A. M. Vershik, “Intrinsic metric on graded graphs, standardness, and invariant measures”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIII, Zap. nauch. sem. POMI, 421, POMI, SPb., 2014, 58–67 | MR | Zbl

[23] A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs”, Funct. Anal. Appl., 48:4 (2014), 256–271 | DOI | DOI | MR | Zbl

[24] A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries”, J. Math. Sci. (N. Y.), 209:6 (2015), 860–873 | DOI | MR | Zbl

[25] A. M. Vershik, “Standardness as an invariant formulation of independence”, Funct. Anal. Appl., 49:4 (2015), 253–263 | DOI | DOI | MR | Zbl

[26] A. M. Vershik, “Smoothness and standardness in the theory of $AF$-algebras and in the problem on invariant measures”, Probability and statistical physics in St. Petersburg, Proc. Sympos. Pure Math., 91, Amer. Math. Soc., Providence, RI, 2016, 423–436 | MR

[27] P. B. Zatitskiy, “On the possible growth rate of a scaling entropy sequence”, J. Math. Sci. (N. Y.), 215:6 (2016), 715–733 | DOI | MR | Zbl

[28] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | DOI | MR | MR | Zbl | Zbl

[29] A. M. Vershik, “Sluchainye i universalnye metricheskie prostranstva”, Fundamentalnaya matematika segodnya, K desyatiletiyu NMU, MTsNMO, M., 2003, 54–88 | MR | Zbl

[30] A. M. Vershik, “Random metric spaces and universality”, Russian Math. Surveys, 59:2 (2004), 259–295 | DOI | DOI | MR | Zbl

[31] P. B. Zatitskiy, F. V. Petrov, “Correction of metrics”, J. Math. Sci. (N. Y.), 181:6 (2012), 867–870 | DOI | MR | Zbl