Universal adic approximation, invariant measures and scaled entropy
Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 734-770

Voir la notice de l'article provenant de la source Math-Net.Ru

We define an infinite graded graph of ordered pairs and a canonical action of the group $\mathbb{Z}$ (the adic action) and of the infinite sum of groups of order two $\mathcal{D}=\sum_1^{\infty} \mathbb{Z}/2\mathbb{Z}$ on the path space of the graph. It is proved that these actions are universal for both groups in the following sense: every ergodic action of these groups with invariant measure and binomial generator, multiplied by a special action (the ‘odometer’), is metrically isomorphic to the canonical adic action on the path space of the graph with a central measure. We consider a series of related problems.
Keywords: graph of ordered pairs, universal action, scaled entropy.
Mots-clés : adic transformation
@article{IM2_2017_81_4_a2,
     author = {A. M. Vershik and P. B. Zatitskii},
     title = {Universal adic approximation, invariant measures and scaled entropy},
     journal = {Izvestiya. Mathematics },
     pages = {734--770},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - P. B. Zatitskii
TI  - Universal adic approximation, invariant measures and scaled entropy
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 734
EP  - 770
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a2/
LA  - en
ID  - IM2_2017_81_4_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A P. B. Zatitskii
%T Universal adic approximation, invariant measures and scaled entropy
%J Izvestiya. Mathematics 
%D 2017
%P 734-770
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a2/
%G en
%F IM2_2017_81_4_a2
A. M. Vershik; P. B. Zatitskii. Universal adic approximation, invariant measures and scaled entropy. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 734-770. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a2/