Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_4_a1, author = {V. V. Vedyushkina (Fokicheva) and A. T. Fomenko}, title = {Integrable topological billiards and equivalent dynamical systems}, journal = {Izvestiya. Mathematics }, pages = {688--733}, publisher = {mathdoc}, volume = {81}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a1/} }
TY - JOUR AU - V. V. Vedyushkina (Fokicheva) AU - A. T. Fomenko TI - Integrable topological billiards and equivalent dynamical systems JO - Izvestiya. Mathematics PY - 2017 SP - 688 EP - 733 VL - 81 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a1/ LA - en ID - IM2_2017_81_4_a1 ER -
V. V. Vedyushkina (Fokicheva); A. T. Fomenko. Integrable topological billiards and equivalent dynamical systems. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 688-733. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a1/
[1] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[2] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl
[3] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl
[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl
[5] V. Dragovich, M. Radnovich, Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2010, 338 pp.
[6] V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse””, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl
[7] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl
[8] V. Dragovich, M. Radnovich, “Topologicheskie invarianty ellipticheskikh billiardov i geodezicheskikh potokov ellipsoidov v prostranstve Minkovskogo”, Fundament. i prikl. matem., 20:2 (2015), 51–64 | MR
[9] V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | DOI | MR | Zbl
[10] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl
[11] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | DOI | MR | MR | Zbl
[12] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | MR | Zbl
[13] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[14] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | MR | Zbl
[15] D. Genin, B. Khesin, S. Tabachnikov, “Geodesics on an ellipsoid in Minkowski space”, Enseign. Math. (2), 53:3-4 (2007), 307–331 | MR | Zbl
[16] E. Gutkin, S. Tabachnikov, “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3-4 (2002), 277–301 | DOI | MR | Zbl
[17] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl
[18] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl
[19] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl
[20] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl
[21] E. A. Kudryavtseva, “Integriruemye po Liuvillyu obobschennye billiardnye potoki i teoremy tipa Ponsele”, Fundament. i prikl. matem., 20:3 (2015), 113–152 | MR
[22] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl
[23] O. E. Orel, S. Takahashi, “Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis”, Sb. Math., 187:1 (1996), 93–110 | DOI | DOI | MR | Zbl
[24] O. E. Orel, “Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems”, Sb. Math., 186:2 (1995), 271–296 | DOI | MR | Zbl
[25] A. A. Oshemkov, “Opisanie izoenergeticheskikh poverkhnostei integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Trudy seminara po vektornomu i tenzornomu analizu, 23, Izd-vo MGU, M., 1988, 122–132 | MR | Zbl
[26] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl
[27] N. S. Slavina, “Classification of the family of Kovalevskaya–Yehia systems up to Liouville equivalence”, Dokl. Math., 88:2 (2013), 537–540 | DOI | DOI | MR | Zbl
[28] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | DOI | MR | Zbl
[29] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | DOI | MR | Zbl
[30] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl
[31] A. V. Bolsinov, A. T. Fomenko, “Geodezicheskii potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR | Zbl
[32] S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268 | DOI | DOI | MR | Zbl
[33] S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139 | DOI | DOI | MR | Zbl
[34] G. M. Sechkin, “Topologiya dinamiki neodnorodnogo ellipsoida vrascheniya na gladkoi ploskosti”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina – 2016 (Voronezh, 2016), Izdatelsko-poligraficheskii tsentr “Nauchnaya kniga”, Voronezh, 2016, 355–358