Integrable topological billiards and equivalent dynamical systems
Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 688-733.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider several topological integrable billiards and prove that they are Liouville equivalent to many systems of rigid body dynamics. The proof uses the Fomenko–Zieschang theory of invariants of integrable systems. We study billiards bounded by arcs of confocal quadrics and their generalizations, generalized billiards, where the motion occurs on a locally planar surface obtained by gluing several planar domains isometrically along their boundaries, which are arcs of confocal quadrics. We describe two new classes of integrable billiards bounded by arcs of confocal quadrics, namely, non-compact billiards and generalized billiards obtained by gluing planar billiards along non-convex parts of their boundaries. We completely classify non-compact billiards bounded by arcs of confocal quadrics and study their topology using the Fomenko invariants that describe the bifurcations of singular leaves of the additional integral. We study the topology of isoenergy surfaces for some non-convex generalized billiards. It turns out that they possess exotic Liouville foliations: the integral trajectories of the billiard that lie on some singular leaves admit no continuous extension. Such billiards appear to be leafwise equivalent to billiards bounded by arcs of confocal quadrics in the Minkowski metric.
Keywords: integrable system, Fomenko–Zieschang molecule.
Mots-clés : billiard, Liouville equivalence
@article{IM2_2017_81_4_a1,
     author = {V. V. Vedyushkina (Fokicheva) and A. T. Fomenko},
     title = {Integrable topological billiards and equivalent dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {688--733},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a1/}
}
TY  - JOUR
AU  - V. V. Vedyushkina (Fokicheva)
AU  - A. T. Fomenko
TI  - Integrable topological billiards and equivalent dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 688
EP  - 733
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a1/
LA  - en
ID  - IM2_2017_81_4_a1
ER  - 
%0 Journal Article
%A V. V. Vedyushkina (Fokicheva)
%A A. T. Fomenko
%T Integrable topological billiards and equivalent dynamical systems
%J Izvestiya. Mathematics 
%D 2017
%P 688-733
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a1/
%G en
%F IM2_2017_81_4_a1
V. V. Vedyushkina (Fokicheva); A. T. Fomenko. Integrable topological billiards and equivalent dynamical systems. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 688-733. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a1/

[1] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl

[2] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl

[3] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[4] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494 | DOI | MR | Zbl

[5] V. Dragovich, M. Radnovich, Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2010, 338 pp.

[6] V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse””, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl

[7] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl

[8] V. Dragovich, M. Radnovich, “Topologicheskie invarianty ellipticheskikh billiardov i geodezicheskikh potokov ellipsoidov v prostranstve Minkovskogo”, Fundament. i prikl. matem., 20:2 (2015), 51–64 | MR

[9] V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | DOI | MR | Zbl

[10] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[11] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | DOI | MR | MR | Zbl

[12] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | MR | Zbl

[13] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[14] V. V. Fokicheva, A. T. Fomenko, “Integrable billiards model important integrable cases of rigid body dynamics”, Dokl. Math., 92:3 (2015), 682–684 | DOI | MR | Zbl

[15] D. Genin, B. Khesin, S. Tabachnikov, “Geodesics on an ellipsoid in Minkowski space”, Enseign. Math. (2), 53:3-4 (2007), 307–331 | MR | Zbl

[16] E. Gutkin, S. Tabachnikov, “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3-4 (2002), 277–301 | DOI | MR | Zbl

[17] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl

[18] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[19] A. T. Fomenko, H. Zieschang, “On typical topological properties of integrable Hamiltonian systems”, Math. USSR-Izv., 32:2 (1989), 385–412 | DOI | MR | Zbl

[20] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl

[21] E. A. Kudryavtseva, “Integriruemye po Liuvillyu obobschennye billiardnye potoki i teoremy tipa Ponsele”, Fundament. i prikl. matem., 20:3 (2015), 113–152 | MR

[22] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl

[23] O. E. Orel, S. Takahashi, “Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis”, Sb. Math., 187:1 (1996), 93–110 | DOI | DOI | MR | Zbl

[24] O. E. Orel, “Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems”, Sb. Math., 186:2 (1995), 271–296 | DOI | MR | Zbl

[25] A. A. Oshemkov, “Opisanie izoenergeticheskikh poverkhnostei integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Trudy seminara po vektornomu i tenzornomu analizu, 23, Izd-vo MGU, M., 1988, 122–132 | MR | Zbl

[26] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl

[27] N. S. Slavina, “Classification of the family of Kovalevskaya–Yehia systems up to Liouville equivalence”, Dokl. Math., 88:2 (2013), 537–540 | DOI | DOI | MR | Zbl

[28] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | DOI | MR | Zbl

[29] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | DOI | MR | Zbl

[30] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl

[31] A. V. Bolsinov, A. T. Fomenko, “Geodezicheskii potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR | Zbl

[32] S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268 | DOI | DOI | MR | Zbl

[33] S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139 | DOI | DOI | MR | Zbl

[34] G. M. Sechkin, “Topologiya dinamiki neodnorodnogo ellipsoida vrascheniya na gladkoi ploskosti”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina – 2016 (Voronezh, 2016), Izdatelsko-poligraficheskii tsentr “Nauchnaya kniga”, Voronezh, 2016, 355–358