Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_4_a0, author = {S. V. Bolotin and V. V. Kozlov}, title = {Topology, singularities and integrability in {Hamiltonian} systems with two degrees of freedom}, journal = {Izvestiya. Mathematics }, pages = {671--687}, publisher = {mathdoc}, volume = {81}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a0/} }
TY - JOUR AU - S. V. Bolotin AU - V. V. Kozlov TI - Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom JO - Izvestiya. Mathematics PY - 2017 SP - 671 EP - 687 VL - 81 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a0/ LA - en ID - IM2_2017_81_4_a0 ER -
S. V. Bolotin; V. V. Kozlov. Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 671-687. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a0/
[1] W. B. Gordon, “Conservative dynamical systems involving strong forces”, Trans. Amer. Math. Soc., 204 (1975), 113–135 | DOI | MR | Zbl
[2] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl
[3] S. V. Bolotin, “First integrals of systems with gyroscopic forces”, Moscow Univ. Mech. Bull., 39:6 (1984), 20–28 | MR | Zbl
[4] I. A. Taimanov, “On integrable magnetic geodesic flow on the two-torus”, Regul. Chaotic Dyn., 20:6 (2015), 667–678 | DOI | MR | Zbl
[5] S. V. Bolotin, “The effect of singularities of the potential energy on the integrability of mechanical systems”, J. Appl. Math. Mech., 48:3 (1984), 255–260 | DOI | MR | Zbl
[6] E. I. Dinaburg, “On the relations among various entropy characteristics of dynamical systems”, Math. USSR-Izv., 5:2 (1971), 337–378 | DOI | MR | Zbl
[7] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20 (1979), 1413–1415 | MR | Zbl
[8] S. V. Bolotin, “Homoclinic orbits of geodesic flows on surfaces”, Russian J. Math. Phys., 1:3 (1993), 275–288 | MR | Zbl
[9] S. V. Bolotin, R. S. MacKay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75 | DOI | MR | Zbl
[10] S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030 | DOI | DOI | MR | Zbl
[11] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[12] N. Soave, S. Terracini, “Symbolic dynamics for the $N$-centre problem at negative energies”, Discrete Contin. Dyn. Syst., 32:9 (2012), 3245–3301 | DOI | MR | Zbl
[13] R. Castelli, “Topologically distinct collision-free periodic solutions for the $N$-center problem”, Arch. Ration. Mech. Anal., 223:2 (2017), 941–975 | DOI | MR | Zbl
[14] V. V. Kozlov, D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | DOI | MR | Zbl
[15] V. J. Donnay, “Non-ergodicity of two particles interacting via a smooth potential”, J. Statist. Phys., 96:5-6 (1999), 1021–1048 | DOI | MR | Zbl
[16] V. Donnay, C. Liverani, “Potentials on the two-torus for which the Hamiltonian flow is ergodic”, Comm. Math. Phys., 135:2 (1991), 267–302 | DOI | MR | Zbl
[17] C. Liverani, “Interacting particles”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Math. Phys., II, Springer, Berlin, 2000, 179–216 | DOI | MR | Zbl
[18] V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290 | DOI | DOI | MR | Zbl
[19] V. V. Kozlov, “Conservation laws of generalized billiards that are polynomial in momenta”, Russ. J. Math. Phys., 21:2 (2014), 226–241 | DOI | MR | Zbl
[20] I. A. Ta\u imanov, “Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds”, Math. USSR-Izv., 30:2 (1988), 403–409 | DOI | MR | Zbl
[21] G. P. Paternain, “Topological entropy for geodesic flows on fibre bundles over rationally hyperbolic manifolds”, Proc. Amer. Math. Soc., 125:9 (1997), 2759–2765 | DOI | MR | Zbl
[22] S. V. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892 | DOI | MR | Zbl
[23] A. Knauf, “Ergodic and topological properties of Coulombic periodic potentials”, Comm. Math. Phys., 110:1 (1987), 89–112 | DOI | MR | Zbl
[24] S. V. Bolotin, V. V. Kozlov, “Topologicheskii podkhod k obobschennoi zadache $n$ tsentrov”, UMN, 2017 (to appear)
[25] S. V. Bolotin, “Nonintegrability of the $N$-center problem for $N>2$”, Moscow Univ. Mech. Bull., 39:3 (1984), 24–28 | MR | Zbl
[26] S. V. Agapov, M. Bialy, A. E. Mironov, “Integrable magnetic geodesic flows on $2$-torus: new example via quasi-linear system of PDEs”, Comm. Math. Phys., 351:3 (2017), 993–1007 | DOI | MR
[27] I. A. Taimanov, “On first integrals of geodesic flows on a two-torus”, Proc. Steklov Inst. Math., 295 (2016), 225–242 | DOI | DOI | MR
[28] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR-Izv., 21:2 (1983), 291–306 | DOI | MR | Zbl
[29] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl