Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom
Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 671-687.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the existence of first integrals that are polynomial in momenta for Hamiltonian systems with two degrees of freedom on a fixed energy level (conditional Birkhoff integrals). It is assumed that the potential has several singular points. We show that in the presence of conditional polynomial integrals, the sum of degrees of the singularities does not exceed twice the Euler characteristic of the configuration space. The proof is based on introducing a complex structure on the configuration space and estimating the degree of the divisor corresponding to the leading term of the integral with respect to the momentum. We also prove that the topological entropy is positive under certain conditions.
Keywords: Hamiltonian system, integrability, singular point, regularization, Finsler metric
Mots-clés : conformal structure.
@article{IM2_2017_81_4_a0,
     author = {S. V. Bolotin and V. V. Kozlov},
     title = {Topology, singularities and integrability in {Hamiltonian} systems with two degrees of freedom},
     journal = {Izvestiya. Mathematics },
     pages = {671--687},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a0/}
}
TY  - JOUR
AU  - S. V. Bolotin
AU  - V. V. Kozlov
TI  - Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 671
EP  - 687
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a0/
LA  - en
ID  - IM2_2017_81_4_a0
ER  - 
%0 Journal Article
%A S. V. Bolotin
%A V. V. Kozlov
%T Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom
%J Izvestiya. Mathematics 
%D 2017
%P 671-687
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a0/
%G en
%F IM2_2017_81_4_a0
S. V. Bolotin; V. V. Kozlov. Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom. Izvestiya. Mathematics , Tome 81 (2017) no. 4, pp. 671-687. http://geodesic.mathdoc.fr/item/IM2_2017_81_4_a0/

[1] W. B. Gordon, “Conservative dynamical systems involving strong forces”, Trans. Amer. Math. Soc., 204 (1975), 113–135 | DOI | MR | Zbl

[2] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[3] S. V. Bolotin, “First integrals of systems with gyroscopic forces”, Moscow Univ. Mech. Bull., 39:6 (1984), 20–28 | MR | Zbl

[4] I. A. Taimanov, “On integrable magnetic geodesic flow on the two-torus”, Regul. Chaotic Dyn., 20:6 (2015), 667–678 | DOI | MR | Zbl

[5] S. V. Bolotin, “The effect of singularities of the potential energy on the integrability of mechanical systems”, J. Appl. Math. Mech., 48:3 (1984), 255–260 | DOI | MR | Zbl

[6] E. I. Dinaburg, “On the relations among various entropy characteristics of dynamical systems”, Math. USSR-Izv., 5:2 (1971), 337–378 | DOI | MR | Zbl

[7] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20 (1979), 1413–1415 | MR | Zbl

[8] S. V. Bolotin, “Homoclinic orbits of geodesic flows on surfaces”, Russian J. Math. Phys., 1:3 (1993), 275–288 | MR | Zbl

[9] S. V. Bolotin, R. S. MacKay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75 | DOI | MR | Zbl

[10] S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030 | DOI | DOI | MR | Zbl

[11] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[12] N. Soave, S. Terracini, “Symbolic dynamics for the $N$-centre problem at negative energies”, Discrete Contin. Dyn. Syst., 32:9 (2012), 3245–3301 | DOI | MR | Zbl

[13] R. Castelli, “Topologically distinct collision-free periodic solutions for the $N$-center problem”, Arch. Ration. Mech. Anal., 223:2 (2017), 941–975 | DOI | MR | Zbl

[14] V. V. Kozlov, D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | DOI | MR | Zbl

[15] V. J. Donnay, “Non-ergodicity of two particles interacting via a smooth potential”, J. Statist. Phys., 96:5-6 (1999), 1021–1048 | DOI | MR | Zbl

[16] V. Donnay, C. Liverani, “Potentials on the two-torus for which the Hamiltonian flow is ergodic”, Comm. Math. Phys., 135:2 (1991), 267–302 | DOI | MR | Zbl

[17] C. Liverani, “Interacting particles”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Math. Phys., II, Springer, Berlin, 2000, 179–216 | DOI | MR | Zbl

[18] V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290 | DOI | DOI | MR | Zbl

[19] V. V. Kozlov, “Conservation laws of generalized billiards that are polynomial in momenta”, Russ. J. Math. Phys., 21:2 (2014), 226–241 | DOI | MR | Zbl

[20] I. A. Ta\u imanov, “Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds”, Math. USSR-Izv., 30:2 (1988), 403–409 | DOI | MR | Zbl

[21] G. P. Paternain, “Topological entropy for geodesic flows on fibre bundles over rationally hyperbolic manifolds”, Proc. Amer. Math. Soc., 125:9 (1997), 2759–2765 | DOI | MR | Zbl

[22] S. V. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892 | DOI | MR | Zbl

[23] A. Knauf, “Ergodic and topological properties of Coulombic periodic potentials”, Comm. Math. Phys., 110:1 (1987), 89–112 | DOI | MR | Zbl

[24] S. V. Bolotin, V. V. Kozlov, “Topologicheskii podkhod k obobschennoi zadache $n$ tsentrov”, UMN, 2017 (to appear)

[25] S. V. Bolotin, “Nonintegrability of the $N$-center problem for $N>2$”, Moscow Univ. Mech. Bull., 39:3 (1984), 24–28 | MR | Zbl

[26] S. V. Agapov, M. Bialy, A. E. Mironov, “Integrable magnetic geodesic flows on $2$-torus: new example via quasi-linear system of PDEs”, Comm. Math. Phys., 351:3 (2017), 993–1007 | DOI | MR

[27] I. A. Taimanov, “On first integrals of geodesic flows on a two-torus”, Proc. Steklov Inst. Math., 295 (2016), 225–242 | DOI | DOI | MR

[28] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR-Izv., 21:2 (1983), 291–306 | DOI | MR | Zbl

[29] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl