Partitioning Kripke frames of finite height
Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 592-617

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the finite model property and decidability of a family of modal logics. A binary relation $R$ is said to be pretransitive if $R^*=\bigcup_{i\leqslant m} R^i$ for some $m\geqslant 0$, where $R^*$ is the transitive reflexive closure of $R$. By the height of a frame $(W,R)$ we mean the height of the preorder $(W,R^*)$. We construct special partitions (filtrations) of pretransitive frames of finite height, which implies the finite model property and decidability of their modal logics.
Keywords: modal logic, finite model property, decidability, finite height.
Mots-clés : pretransitive relation
@article{IM2_2017_81_3_a5,
     author = {A. V. Kudinov and I. B. Shapirovsky},
     title = {Partitioning {Kripke} frames of finite height},
     journal = {Izvestiya. Mathematics },
     pages = {592--617},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a5/}
}
TY  - JOUR
AU  - A. V. Kudinov
AU  - I. B. Shapirovsky
TI  - Partitioning Kripke frames of finite height
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 592
EP  - 617
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a5/
LA  - en
ID  - IM2_2017_81_3_a5
ER  - 
%0 Journal Article
%A A. V. Kudinov
%A I. B. Shapirovsky
%T Partitioning Kripke frames of finite height
%J Izvestiya. Mathematics 
%D 2017
%P 592-617
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a5/
%G en
%F IM2_2017_81_3_a5
A. V. Kudinov; I. B. Shapirovsky. Partitioning Kripke frames of finite height. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 592-617. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a5/