Partitioning Kripke frames of finite height
Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 592-617
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove the finite model property and decidability
of a family of modal logics. A binary relation $R$ is said to be pretransitive
if $R^*=\bigcup_{i\leqslant m} R^i$ for some $m\geqslant 0$, where $R^*$ is the
transitive reflexive closure of $R$. By the height of a frame $(W,R)$ we mean
the height of the preorder $(W,R^*)$. We construct special partitions
(filtrations) of pretransitive frames of finite height, which implies
the finite model property and decidability of their modal logics.
Keywords:
modal logic, finite model property, decidability, finite height.
Mots-clés : pretransitive relation
Mots-clés : pretransitive relation
@article{IM2_2017_81_3_a5,
author = {A. V. Kudinov and I. B. Shapirovsky},
title = {Partitioning {Kripke} frames of finite height},
journal = {Izvestiya. Mathematics },
pages = {592--617},
publisher = {mathdoc},
volume = {81},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a5/}
}
A. V. Kudinov; I. B. Shapirovsky. Partitioning Kripke frames of finite height. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 592-617. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a5/