A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II
Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 568-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the problem of approximating real functions $f$ by simple partial fractions of order ${\le}\,n$ on closed intervals $K=[c-\varrho,c+\varrho]\subset\mathbb{R}$, we obtain a criterion for the best uniform approximation which is similar to Chebyshev's alternance theorem and considerably generalizes previous results: under the same condition $z_j^*\notin B(c,\varrho)= \{z\colon|z-c|\le\varrho\}$ on the poles $z_j^*$ of the fraction $\rho^*(n,f,K;x)$ of best approximation, we omit the restriction $k=n$ on the order $k$ of this fraction. In the case of approximation of odd functions on $[-\varrho,\varrho]$, we obtain a similar criterion under much weaker restrictions on the position of the poles $z_j^*$: the disc $B(0,\varrho)$ is replaced by the domain bounded by a lemniscate contained in this disc. We give some applications of this result. The main theorems are extended to the case of weighted approximation. We give a lower bound for the distance from $\mathbb{R}^+$ to the set of poles of all simple partial fractions of order ${\le}\,n$ which are normalized with weight $2\sqrt x$ on $\mathbb{R}^+$ (a weighted analogue of Gorin's problem on the semi-axis).
Keywords: simple partial fraction, approximation, uniqueness, disc, odd function, lemniscate.
Mots-clés : alternance
@article{IM2_2017_81_3_a4,
     author = {M. A. Komarov},
     title = {A criterion for the best uniform approximation by simple partial fractions in terms of {alternance.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {568--591},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a4/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 568
EP  - 591
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a4/
LA  - en
ID  - IM2_2017_81_3_a4
ER  - 
%0 Journal Article
%A M. A. Komarov
%T A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II
%J Izvestiya. Mathematics 
%D 2017
%P 568-591
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a4/
%G en
%F IM2_2017_81_3_a4
M. A. Komarov. A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 568-591. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a4/

[1] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl

[2] V. I. Danchenko, “Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 425–440 | DOI | MR | Zbl

[3] O. N. Kosukhin, “Approximation properties of the most simple fractions”, Moscow Univ. Math. Bull., 56:4 (2001), 36–40 | MR | Zbl

[4] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | DOI | MR | Zbl

[5] P. A. Borodin, O. N. Kosukhin, “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl

[6] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | DOI | MR | Zbl

[7] M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izv. Math., 79:3 (2015), 431–448 | DOI | DOI | MR | Zbl

[8] M. A. Komarov, “On the analog of Chebyshev theorem for simple partial fractions”, Kompleksnyi analiz i ego prilozheniya, Materialy VII Petrozavodskoi mezhdunarodnoi konferentsii (Petrozavodsk, 2014), PetrGU, Petrozavodsk, 2014, 65–69

[9] V. I. Danchenko, E. N. Kondakova, “Chebyshev's alternance in the approximation of constants by simple partial fractions”, Proc. Steklov Inst. Math., 270 (2010), 80–90 | DOI | MR | Zbl

[10] V. I. Danchenko, D. Ya. Danchenko, “O edinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Tezisy dokladov Mezhdunarodnoi konferentsii po differentsialnym uravneniyam i dinamicheskim sistemam (Suzdal, 2010), MIAN, M., 2010, 71–72

[11] M. A. Komarov, “A criterion for the best approximation of constants by simple partial fractions”, Math. Notes, 93:2 (2013), 250–256 | DOI | DOI | MR | Zbl

[12] M. A. Komarov, “Best approximation rate of constants by simple partial fractions and Chebyshev alternance”, Math. Notes, 97:5 (2015), 725–737 | DOI | DOI | MR | Zbl

[13] N. Bakhvalov, Méthodes numériques. Analyse, algèbre, équations différentielles ordinaires, Mir, M., 1976, 606 pp. | MR | MR | Zbl | Zbl

[14] E. N. Kondakova, Interpolyatsiya i approksimatsiya naiprosteishimi drobyami, Diss. ... kand. fiz.-matem. nauk, VlGU, Vladimir, 2012, 96 pp.

[15] A. F. Timan, Theory of approximation of functions of a real variable, Internat. Ser. Monogr. Pure Appl. Math., 34, A Pergamon Press Book. The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl

[16] E. A. Gorin, “Chastichno gipoellipticheskie differentsialnye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Sib. matem. zhurn., 3:4 (1962), 500–526 | MR | Zbl

[17] M. A. Komarov, “An example of non-uniqueness of a simple partial fraction of the best uniform approximation”, Russian Math. (Iz. VUZ), 57:9 (2013), 22–30 | DOI | MR | Zbl

[18] D. Ya. Danchenko, Nekotorye voprosy approksimatsii i interpolyatsii ratsionalnymi funktsiyami. Prilozhenie k uravneniyam ellipticheskogo tipa, Diss. ... kand. fiz.-matem. nauk, VGPU, Vladimir, 2001, 116 pp.