A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II
Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 568-591

Voir la notice de l'article provenant de la source Math-Net.Ru

In the problem of approximating real functions $f$ by simple partial fractions of order ${\le}\,n$ on closed intervals $K=[c-\varrho,c+\varrho]\subset\mathbb{R}$, we obtain a criterion for the best uniform approximation which is similar to Chebyshev's alternance theorem and considerably generalizes previous results: under the same condition $z_j^*\notin B(c,\varrho)= \{z\colon|z-c|\le\varrho\}$ on the poles $z_j^*$ of the fraction $\rho^*(n,f,K;x)$ of best approximation, we omit the restriction $k=n$ on the order $k$ of this fraction. In the case of approximation of odd functions on $[-\varrho,\varrho]$, we obtain a similar criterion under much weaker restrictions on the position of the poles $z_j^*$: the disc $B(0,\varrho)$ is replaced by the domain bounded by a lemniscate contained in this disc. We give some applications of this result. The main theorems are extended to the case of weighted approximation. We give a lower bound for the distance from $\mathbb{R}^+$ to the set of poles of all simple partial fractions of order ${\le}\,n$ which are normalized with weight $2\sqrt x$ on $\mathbb{R}^+$ (a weighted analogue of Gorin's problem on the semi-axis).
Keywords: simple partial fraction, approximation, uniqueness, disc, odd function, lemniscate.
Mots-clés : alternance
@article{IM2_2017_81_3_a4,
     author = {M. A. Komarov},
     title = {A criterion for the best uniform approximation by simple partial fractions in terms of {alternance.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {568--591},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a4/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 568
EP  - 591
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a4/
LA  - en
ID  - IM2_2017_81_3_a4
ER  - 
%0 Journal Article
%A M. A. Komarov
%T A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II
%J Izvestiya. Mathematics 
%D 2017
%P 568-591
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a4/
%G en
%F IM2_2017_81_3_a4
M. A. Komarov. A criterion for the best uniform approximation by simple partial fractions in terms of alternance.~II. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 568-591. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a4/