A boundary-value problem for a~first-order hyperbolic system in a~two-dimensional domain
Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 542-567.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a strictly hyperbolic first-order system of three equations with constant coefficients in a bounded piecewise-smooth domain. The boundary of the domain is assumed to consist of six smooth non-characteristic arcs. A boundary-value problem in this domain is posed by alternately prescribing one or two linear combinations of the components of the solution on these arcs. We show that this problem has a unique solution under certain additional conditions on the coefficients of these combinations, the boundary of the domain and the behaviour of the solution near the characteristics passing through the corner points of the domain.
Keywords: strictly hyperbolic first-order systems of differential equations, two-dimensional admissible domains, boundary-value problems, shift operator, functional operator, estimate for the spectral radius of a functional operator.
@article{IM2_2017_81_3_a3,
     author = {N. A. Zhura and A. P. Soldatov},
     title = {A boundary-value problem for a~first-order hyperbolic system in a~two-dimensional domain},
     journal = {Izvestiya. Mathematics },
     pages = {542--567},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a3/}
}
TY  - JOUR
AU  - N. A. Zhura
AU  - A. P. Soldatov
TI  - A boundary-value problem for a~first-order hyperbolic system in a~two-dimensional domain
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 542
EP  - 567
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a3/
LA  - en
ID  - IM2_2017_81_3_a3
ER  - 
%0 Journal Article
%A N. A. Zhura
%A A. P. Soldatov
%T A boundary-value problem for a~first-order hyperbolic system in a~two-dimensional domain
%J Izvestiya. Mathematics 
%D 2017
%P 542-567
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a3/
%G en
%F IM2_2017_81_3_a3
N. A. Zhura; A. P. Soldatov. A boundary-value problem for a~first-order hyperbolic system in a~two-dimensional domain. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 542-567. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a3/

[1] A. V. Bitsadze, Some classes of partial differential equations, Adv. Stud. Contemp. Math., 4, Gordon and Breach Science Publishers, New York, 1988, xiv+504 pp. | MR | MR | Zbl | Zbl

[2] S. S. Kharibegashvili, “Goursat problem for a class of systems of second-order hyperbolic equations”, Differential Equations, 18 (1982), 131–142 | MR | Zbl

[3] S. L. Sobolev, “Ob analiticheskikh resheniyakh sistem uravnenii v chastnykh proizvodnykh s dvumya nezavisimymi peremennymi”, Matem. sb., 38:1-2 (1931), 107–147 | Zbl

[4] D. G. Bourgin, R. Duffin, “The Dirichlet problem for the vibrating string equation”, Bull. Amer. Math. Soc., 45:12 (1939), 851–858 | DOI | MR | Zbl

[5] F. John, “The Dirichlet problem for a hyperbolic equation”, Amer. J. Math., 63:1 (1941), 141–154 | DOI | MR | Zbl

[6] L. A. Meltser, “O korrektnoi postanovke zadachi Gursa”, Matem. sb., 18(60):1 (1946), 59–104 | MR | Zbl

[7] R. A. Aleksandryan, “O zadache Dirikhle dlya uravneniya struny i o polnote odnoi sistemy funktsii v kruge”, Dokl. AN SSSR, 73:5 (1950), 869–872 | MR | Zbl

[8] S. L. Sobolev, “Primer korrektnoi kraevoi zadachi dlya uravneniya kolebanii struny s dannymi na vsei granitse”, Dokl. AN SSSR, 109:4 (1956), 707–709 | MR | Zbl

[9] N. N. Vakhaniya, “Ob odnoi kraevoi zadache s zadaniem na vsei granitse dlya giperbolicheskoi sistemy, ekvivalentnoi uravneniyu kolebanii struny”, Dokl. AN SSSR, 116:6 (1957), 906–909 | MR | Zbl

[10] V. P. Mikhailov, “O neanaliticheskikh resheniyakh zadachi Gursa dlya sistemy differentsialnykh uravnenii s dvumya nezavisimymi peremennymi”, Dokl. AN SSSR, 117 (1957), 759–762 | MR

[11] Yu. M. Berezanskii, “O zadache Dirikhle dlya uravneniya kolebaniya struny”, Ukr. matem. zhurn., 12:4 (1960), 363–372 | MR

[12] M. V. Fokin, “On the solvability of the Dirichlet problem for the equation of the vibrating string”, Soviet Math. Dokl., 28 (1983), 455–459 | MR | Zbl

[13] Yu. N. Shishmareva, “Zadachi tipa Rimana–Gilberta dlya sistemy uravnenii kolebaniya struny”, Evraziiskii matem. zhurn., 3 (2006), 87–102

[14] N. N. Vakhania, “On boundary value problems for the hyperbolic case”, J. Complexity, 10:3 (1994), 341–355 | DOI | MR | Zbl

[15] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl

[16] A. P. Soldatov, “Otsenka spektralnogo radiusa funktsionalnykh operatorov”, Neklassicheskie uravneniya matematicheskoi fiziki, Trudy seminara, posvyaschennogo 60-letiyu prof. V. N. Vragova, Izd-vo In-ta matem., Novosibirsk, 2005, 268–274 | Zbl