Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences
Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 505-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a derivation of the Vlasov–Maxwell and Vlasov–Poisson–Poisson equations from the Lagrangians of classical electrodynamics. The equations of electromagnetic hydrodynamics (EMHD) and electrostatics with gravitation are derived from them by means of a ‘hydrodynamical’ substitution. We obtain and compare the Lagrange identities for various types of Vlasov equations and EMHD equations. We discuss the advantages of writing the EMHD equations in Godunov's double divergence form. We analyze stationary solutions of the Vlasov–Poisson–Poisson equation, which give rise to non-linear elliptic equations with various properties and various kinds of behaviour of the trajectories of particles as the mass passes through a critical value. We show that the classical equations can be derived from the Liouville equation by the Hamilton–Jacobi method and give an analogue of this procedure for the Vlasov equation as well as in the non-Hamiltonian case.
Keywords: Hamilton–Jacobi method, hydrodynamical substitution, Vlasov–Maxwell equation, Lagrange identity.
Mots-clés : Liouville equation, Vlasov–Poisson–Poisson equation
@article{IM2_2017_81_3_a2,
     author = {V. V. Vedenyapin and M. A. Negmatov and N. N. Fimin},
     title = {Vlasov-type and {Liouville-type} equations, their microscopic, energetic and hydrodynamical consequences},
     journal = {Izvestiya. Mathematics },
     pages = {505--541},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a2/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - M. A. Negmatov
AU  - N. N. Fimin
TI  - Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 505
EP  - 541
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a2/
LA  - en
ID  - IM2_2017_81_3_a2
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A M. A. Negmatov
%A N. N. Fimin
%T Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences
%J Izvestiya. Mathematics 
%D 2017
%P 505-541
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a2/
%G en
%F IM2_2017_81_3_a2
V. V. Vedenyapin; M. A. Negmatov; N. N. Fimin. Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 505-541. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a2/

[1] A. A. Vlasov, “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8:3 (1938), 291–318 | Zbl

[2] A. A. Vlasov, Nelokalnaya statisticheskaya mekhanika, Nauka, M., 1978, 264 pp. | MR

[3] N. N. Bogolyubov, “Problems of a dynamical theory in statistical physics”, Studies in Statistical Mechanics, 1, North-Holland, Amsterdam; Interscience, New York, 1962, 1–118 | MR | MR | Zbl

[4] V. P. Maslov, P. P. Mosolov, “The asymptotic behavior as $N\to\infty$ of the trajectories of $N$ point masses interacting in accordance with Newton's law of gravitation”, Math. USSR-Izv., 13:2 (1979), 349–386 | DOI | MR | Zbl

[5] Yu. A. Volkov, “Solutions of the Vlasov equation in Lagrange coordinates”, Theoret. and Math. Phys., 151:1 (2007), 556–565 | DOI | DOI | MR | Zbl

[6] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 2, Klassische Feldtheorie, Akademie-Verlag, Berlin, 1967, x+392 pp. | MR | MR | Zbl | Zbl

[7] I. P. Pavlotskii, Vvedenie v slaborelyativistskuyu statisticheskuyu mekhaniku, IPM im. M. V. Keldysha AH CCCP, M., 1987, 167 pp.

[8] W. Pauli, “Relativitätstheorie”, Encyklopädie der mathematischen Wissenschaften, 19, Teubner, Leipzig, 1921, 538–775 | MR | Zbl

[9] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | DOI | MR | Zbl

[10] B. B. Kozlov, “Kineticheskoe uravnenie Vlasova, dinamika sploshnykh sred i turbulentnost”, Nelineinaya dinam., 6:3 (2010), 489–512

[11] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966, 356 pp. ; т. 2, 1963, 264 с. ; т. 3, 1963, 291 с. | MR | MR | Zbl | MR

[12] Reviews of plasma physics, v. 1, ed. M. A. Leontovič, Consultants Bureau, New York, 1965, xii+326 pp. ; v. 2, 1963, viii+297 pp. | MR | MR | MR | MR | MR | Zbl

[13] B. B. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001, 112 pp.

[14] M. B. Gavrikov, V. V. Savel'ev, “Plasmastatic problems in two-fluid magnetohydrodynamics with allowance for the electron inertia”, Fluid Dyn., 45:2 (2010), 325–341 | DOI | MR | Zbl

[15] V. V. Vedenyapin, M. A. Negmatov, “Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov's form”, Theoret. and Math. Phys., 170:3 (2012), 394–405 | DOI | DOI | MR | Zbl

[16] A. G. Kulikovskii, G. A. Lyubimov, Magnitnaya gidrodinamika, 2-e izd., ispr. i dop., Logos, M., 2005, 328 pp. | Zbl

[17] V. I. Arnol'd, “On the topology of three-dimensional steady flows of an ideal fluid”, J. Appl. Math. Mech., 30 (1966), 223–226 | DOI | MR | Zbl

[18] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | DOI | MR | MR | Zbl

[19] V. V. Kozlov, “Notes on steady vortex motions of continuous medium”, J. Appl. Math. Mech., 47:2 (1984), 288–289 | DOI | MR | Zbl

[20] V. S. Vladimirov, V. V. Zharinov, Uravneniya matematicheskoi fiziki, 2-e izd., Fizmatlit, M., 2004, 400 pp. | Zbl

[21] W. Braun, K. Hepp, “The Vlasov dynamics and its fluctuations in the $1/N$ limit of interactive classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR | Zbl

[22] V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and related equations, Elsevier, Inc., Amsterdam, 2011, xvi+304 pp. | MR | Zbl

[23] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento (2), 13:11 (1975), 411–416 | DOI | MR

[24] H. Neunzert, “The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles”, Trans. Fluid Dynamics, 18 (1977), 663–678

[25] Ye Huanchun, Ph. J. Morrison, “Action principles for the Vlasov equation”, Phys. Fluids B, 4:4 (1992), 771–777 | DOI | MR

[26] E. M. Lifschitz, L. P. Pitajewski, Lehrbuch der theoretischen Physik, v. 10, Physikalische Kinetik, Akademie-Verlag, Berlin, 1983, xiv+480 pp. | MR | MR | Zbl

[27] V. L. Polyachenko, A. M. Fridman, Ravnovesie i ustoichivost gravitiruyuschikh sistem, Nauka, M., 1976, 447 pp. | MR | Zbl

[28] V. P. Silin, Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971, 332 pp.

[29] J. Batt, H. Berestycky, P. Degond, B. Perthame, “Some families of solutions of the Vlasov–Poisson system”, Arch. Rational Mech. Anal., 104:1 (1988), 79–103 | DOI | MR | Zbl

[30] G. Rein, “Existence of stationary, collisionless plasmas in bounded domains”, Math. Methods Appl. Sci., 15:5 (1992), 365–374 | DOI | MR | Zbl

[31] A. L. Skubachevskii, “Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field”, Russian Math. Surveys, 69:2 (2014), 291–330 | DOI | DOI | MR | Zbl

[32] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, II, Grundlehren Math. Wiss., 12, 48, Springer, Berlin, 1931, 1937, xiv+469 pp., xiv+549 pp. | MR | MR | Zbl | Zbl

[33] V. V. Vedenyapin, “Boundary value problems for the steady-state Vlasov equation”, Soviet Math. Dokl., 34:2 (1987), 335–338 | MR | Zbl

[34] V. V. Vedenyapin, “On the classification of steady-state solutions of Vlasov's equation on the torus, and a boundary value problem”, Russian Acad. Sci. Dokl. Math., 45:2 (1992), 459–462 | MR | Zbl

[35] Yu. Yu. Arkhipov, V. V. Vedenyapin, “On the classification and stability of steady-state solutions of Vlasov's equation on a torus and in a boundary value problem”, Proc. Steklov Inst. Math., 203 (1995), 11–17 | MR | Zbl

[36] J. Liouville, “Sur l'équation aux différences partielles”, J. Math. Pures Appl., 18 (1853), 71–72

[37] K. V. Brushlinskii, Matematicheskie i vychislitelnye zadachi magnitnoi gazodinamiki, Binom, M., 2009, 200 pp.

[38] A. B. Mikhailovskii, Teoriya plazmennykh neustoichivostei, v. 1, 2, Atomizdat, M., 1970, 1971, 294 s., 312 pp.

[39] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 8, Elektrodynamik der Kontinua, 4. erg. und bearb. Aufl., Akademie-Verlag, Berlin, 1985, xiv+565 pp. | MR | MR | Zbl

[40] S. I. Braginskii, “Transport processes in a plasma”, Reviews of plasma physics, v. 1, Consultants Bureau, New York, 1965, 205–311 | MR | MR | Zbl

[41] D. Bohm, “General theory of collective coordinates”, The many body problem. Le problème à $N$ corps (Les Houches, 1958), Methuen, London; John Wiley Sons, New York; Dunod, Paris, 1959, 401–516 | MR

[42] V. V. Vedenyapin, M. A. Negmatov, “On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass”, J. Math. Sci. (N. Y.), 202:5 (2014), 769–782 | DOI | MR | Zbl

[43] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26:3 (1971), 1–56 | DOI | MR | Zbl

[44] J. H. Ferziger, H. G. Kaper, Mathematical theory of transport processes in gases, North-Holland Publishing Co., Amsterdam–London, 1972, xiii+578 pp.

[45] S. K. Godunov, E. I. Romenskii, Elements of continuum mechanics and conservation laws, Kluwer Academic/Plenum Publishers, New York, 2003, viii+258 pp. | DOI | MR | Zbl | Zbl

[46] V. V. Vedenyapin, N. N. Fimin, “The Liouville equation, the hydrodynamic substitution, and the Hamilton–Jacobi equation”, Dokl. Math., 86:2 (2012), 697–699 | DOI | MR | Zbl

[47] V. V. Vedenyapin, M. A. Negmatov, “On the topology of steady-state solutions of hydrodynamic and vortex consequences of the Vlasov equation and the Hamilton–Jacobi method”, Dokl. Math., 87:2 (2013), 240–244 | DOI | DOI | MR | Zbl

[48] I. S. Arzhanykh, Momentum fields, Nat. Lending Lib., Boston Spa, Yorkshire, 1971, 222 pp. | MR | Zbl | Zbl

[49] K. I. Dolmatov, Pole impulsov analiticheskoi dinamiki, Diss. ... kand. fiz.-matem. nauk, Tashkent, 1950, 84 pp.

[50] V. V. Kozlov, “The hydrodynamics of Hamiltonian systems”, Moscow Univ. Mech. Bull., 38:6 (1983), 9–23 | MR | Zbl

[51] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | MR | Zbl

[52] V. V. Kozlov, Obschaya teoriya vikhrei, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1998, 239 pp. | MR | Zbl

[53] L. G. Loitsyanskii, Mechanics of liquids and gases, Pergamon Press, Oxford–New York–Toronto, Ont., 1966, xii+802 pp. | MR | MR | Zbl

[54] J. Serrin, “Mathematical principles of classical fluid mechanics”, Handbuch der Physik, v. 8/1, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, 125–263 | MR

[55] R. Courant, D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, (vol. II by R. Courant), Interscience Publishers, a division of John Wiley Sons, New York–London, 1962, xxii+830 pp. | MR | MR | Zbl | Zbl

[56] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 1, Mechanik, 14., korr. Aufl., H. Deutsch, Frankfurt am Main, 1997, 231 pp. | MR | Zbl | Zbl

[57] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Mathematical Series, 22, Princeton Univ. Press, Princeton, N.J., 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[58] V. V. Vedenyapin, N. N. Fimin, “Metod Gamiltona–Yakobi dlya negamiltonovykh sistem”, Nelineinaya dinam., 11:2 (2015), 279–286 | Zbl

[59] V. V. Vedenyapin, N. N. Fimin, “The Hamilton–Jacobi method in the non-Hamiltonian situation and the hydrodynamic substitution”, Dokl. Math., 91:2 (2015), 154–157 | DOI | DOI | MR | Zbl

[60] V. V. Vedenyapin, N. N. Fimin, “Metod Gamiltona–Yakobi dlya negamiltonovykh sistem”, Preprinty IPM im. M. V. Keldysha, 2015, 013, 18 pp.

[61] A. V. Odesskii, M. V. Pavlov, V. V. Sokolov, “Classification of integrable Vlasov-type equations”, Theoret. and Math. Phys., 154:2 (2008), 209–219 | DOI | DOI | MR | Zbl

[62] A. V. Bobylev, P. Dukes, R. Illner, H. D. Victory, Jr., “On Vlasov–Manev equations. I. Foundations, properties, and non-global existence”, J. Statist. Phys., 88:3-4 (1997), 885–911 | DOI | MR | Zbl

[63] V. E. Zakharov, “Benney equations and quasiclassical approximation in the method of the inverse problem”, Funct. Anal. Appl., 14:2 (1980), 89–98 | DOI | MR | Zbl

[64] V. V. Kozlov, D. V. Treschev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Theoret. and Math. Phys., 134:3 (2003), 339–350 | DOI | DOI | MR | Zbl

[65] V. V. Vedenyapin, S. Z. Adzhiev, “Entropy in the sense of Boltzmann and Poincaré”, Russian Math. Surveys, 69:6 (2014), 995–1029 | DOI | DOI | MR | Zbl

[66] S. Z. Adzhiev, V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model”, Comput. Math. Math. Phys., 51:11 (2011), 1942–1952 | DOI | MR | Zbl

[67] V. V. Vedenyapin, “Time averages and Boltzmann extremals”, Dokl. Math., 78:2 (2008), 686–688 | DOI | MR | Zbl