Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_3_a2, author = {V. V. Vedenyapin and M. A. Negmatov and N. N. Fimin}, title = {Vlasov-type and {Liouville-type} equations, their microscopic, energetic and hydrodynamical consequences}, journal = {Izvestiya. Mathematics }, pages = {505--541}, publisher = {mathdoc}, volume = {81}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a2/} }
TY - JOUR AU - V. V. Vedenyapin AU - M. A. Negmatov AU - N. N. Fimin TI - Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences JO - Izvestiya. Mathematics PY - 2017 SP - 505 EP - 541 VL - 81 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a2/ LA - en ID - IM2_2017_81_3_a2 ER -
%0 Journal Article %A V. V. Vedenyapin %A M. A. Negmatov %A N. N. Fimin %T Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences %J Izvestiya. Mathematics %D 2017 %P 505-541 %V 81 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a2/ %G en %F IM2_2017_81_3_a2
V. V. Vedenyapin; M. A. Negmatov; N. N. Fimin. Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences. Izvestiya. Mathematics , Tome 81 (2017) no. 3, pp. 505-541. http://geodesic.mathdoc.fr/item/IM2_2017_81_3_a2/
[1] A. A. Vlasov, “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8:3 (1938), 291–318 | Zbl
[2] A. A. Vlasov, Nelokalnaya statisticheskaya mekhanika, Nauka, M., 1978, 264 pp. | MR
[3] N. N. Bogolyubov, “Problems of a dynamical theory in statistical physics”, Studies in Statistical Mechanics, 1, North-Holland, Amsterdam; Interscience, New York, 1962, 1–118 | MR | MR | Zbl
[4] V. P. Maslov, P. P. Mosolov, “The asymptotic behavior as $N\to\infty$ of the trajectories of $N$ point masses interacting in accordance with Newton's law of gravitation”, Math. USSR-Izv., 13:2 (1979), 349–386 | DOI | MR | Zbl
[5] Yu. A. Volkov, “Solutions of the Vlasov equation in Lagrange coordinates”, Theoret. and Math. Phys., 151:1 (2007), 556–565 | DOI | DOI | MR | Zbl
[6] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 2, Klassische Feldtheorie, Akademie-Verlag, Berlin, 1967, x+392 pp. | MR | MR | Zbl | Zbl
[7] I. P. Pavlotskii, Vvedenie v slaborelyativistskuyu statisticheskuyu mekhaniku, IPM im. M. V. Keldysha AH CCCP, M., 1987, 167 pp.
[8] W. Pauli, “Relativitätstheorie”, Encyklopädie der mathematischen Wissenschaften, 19, Teubner, Leipzig, 1921, 538–775 | MR | Zbl
[9] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | DOI | MR | Zbl
[10] B. B. Kozlov, “Kineticheskoe uravnenie Vlasova, dinamika sploshnykh sred i turbulentnost”, Nelineinaya dinam., 6:3 (2010), 489–512
[11] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966, 356 pp. ; т. 2, 1963, 264 с. ; т. 3, 1963, 291 с. | MR | MR | Zbl | MR
[12] Reviews of plasma physics, v. 1, ed. M. A. Leontovič, Consultants Bureau, New York, 1965, xii+326 pp. ; v. 2, 1963, viii+297 pp. | MR | MR | MR | MR | MR | Zbl
[13] B. B. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001, 112 pp.
[14] M. B. Gavrikov, V. V. Savel'ev, “Plasmastatic problems in two-fluid magnetohydrodynamics with allowance for the electron inertia”, Fluid Dyn., 45:2 (2010), 325–341 | DOI | MR | Zbl
[15] V. V. Vedenyapin, M. A. Negmatov, “Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov's form”, Theoret. and Math. Phys., 170:3 (2012), 394–405 | DOI | DOI | MR | Zbl
[16] A. G. Kulikovskii, G. A. Lyubimov, Magnitnaya gidrodinamika, 2-e izd., ispr. i dop., Logos, M., 2005, 328 pp. | Zbl
[17] V. I. Arnol'd, “On the topology of three-dimensional steady flows of an ideal fluid”, J. Appl. Math. Mech., 30 (1966), 223–226 | DOI | MR | Zbl
[18] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, 2nd ed., Springer-Verlag, New York, 1989, xvi+508 pp. | DOI | MR | MR | Zbl
[19] V. V. Kozlov, “Notes on steady vortex motions of continuous medium”, J. Appl. Math. Mech., 47:2 (1984), 288–289 | DOI | MR | Zbl
[20] V. S. Vladimirov, V. V. Zharinov, Uravneniya matematicheskoi fiziki, 2-e izd., Fizmatlit, M., 2004, 400 pp. | Zbl
[21] W. Braun, K. Hepp, “The Vlasov dynamics and its fluctuations in the $1/N$ limit of interactive classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR | Zbl
[22] V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and related equations, Elsevier, Inc., Amsterdam, 2011, xvi+304 pp. | MR | Zbl
[23] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento (2), 13:11 (1975), 411–416 | DOI | MR
[24] H. Neunzert, “The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles”, Trans. Fluid Dynamics, 18 (1977), 663–678
[25] Ye Huanchun, Ph. J. Morrison, “Action principles for the Vlasov equation”, Phys. Fluids B, 4:4 (1992), 771–777 | DOI | MR
[26] E. M. Lifschitz, L. P. Pitajewski, Lehrbuch der theoretischen Physik, v. 10, Physikalische Kinetik, Akademie-Verlag, Berlin, 1983, xiv+480 pp. | MR | MR | Zbl
[27] V. L. Polyachenko, A. M. Fridman, Ravnovesie i ustoichivost gravitiruyuschikh sistem, Nauka, M., 1976, 447 pp. | MR | Zbl
[28] V. P. Silin, Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971, 332 pp.
[29] J. Batt, H. Berestycky, P. Degond, B. Perthame, “Some families of solutions of the Vlasov–Poisson system”, Arch. Rational Mech. Anal., 104:1 (1988), 79–103 | DOI | MR | Zbl
[30] G. Rein, “Existence of stationary, collisionless plasmas in bounded domains”, Math. Methods Appl. Sci., 15:5 (1992), 365–374 | DOI | MR | Zbl
[31] A. L. Skubachevskii, “Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field”, Russian Math. Surveys, 69:2 (2014), 291–330 | DOI | DOI | MR | Zbl
[32] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, II, Grundlehren Math. Wiss., 12, 48, Springer, Berlin, 1931, 1937, xiv+469 pp., xiv+549 pp. | MR | MR | Zbl | Zbl
[33] V. V. Vedenyapin, “Boundary value problems for the steady-state Vlasov equation”, Soviet Math. Dokl., 34:2 (1987), 335–338 | MR | Zbl
[34] V. V. Vedenyapin, “On the classification of steady-state solutions of Vlasov's equation on the torus, and a boundary value problem”, Russian Acad. Sci. Dokl. Math., 45:2 (1992), 459–462 | MR | Zbl
[35] Yu. Yu. Arkhipov, V. V. Vedenyapin, “On the classification and stability of steady-state solutions of Vlasov's equation on a torus and in a boundary value problem”, Proc. Steklov Inst. Math., 203 (1995), 11–17 | MR | Zbl
[36] J. Liouville, “Sur l'équation aux différences partielles”, J. Math. Pures Appl., 18 (1853), 71–72
[37] K. V. Brushlinskii, Matematicheskie i vychislitelnye zadachi magnitnoi gazodinamiki, Binom, M., 2009, 200 pp.
[38] A. B. Mikhailovskii, Teoriya plazmennykh neustoichivostei, v. 1, 2, Atomizdat, M., 1970, 1971, 294 s., 312 pp.
[39] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 8, Elektrodynamik der Kontinua, 4. erg. und bearb. Aufl., Akademie-Verlag, Berlin, 1985, xiv+565 pp. | MR | MR | Zbl
[40] S. I. Braginskii, “Transport processes in a plasma”, Reviews of plasma physics, v. 1, Consultants Bureau, New York, 1965, 205–311 | MR | MR | Zbl
[41] D. Bohm, “General theory of collective coordinates”, The many body problem. Le problème à $N$ corps (Les Houches, 1958), Methuen, London; John Wiley Sons, New York; Dunod, Paris, 1959, 401–516 | MR
[42] V. V. Vedenyapin, M. A. Negmatov, “On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass”, J. Math. Sci. (N. Y.), 202:5 (2014), 769–782 | DOI | MR | Zbl
[43] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26:3 (1971), 1–56 | DOI | MR | Zbl
[44] J. H. Ferziger, H. G. Kaper, Mathematical theory of transport processes in gases, North-Holland Publishing Co., Amsterdam–London, 1972, xiii+578 pp.
[45] S. K. Godunov, E. I. Romenskii, Elements of continuum mechanics and conservation laws, Kluwer Academic/Plenum Publishers, New York, 2003, viii+258 pp. | DOI | MR | Zbl | Zbl
[46] V. V. Vedenyapin, N. N. Fimin, “The Liouville equation, the hydrodynamic substitution, and the Hamilton–Jacobi equation”, Dokl. Math., 86:2 (2012), 697–699 | DOI | MR | Zbl
[47] V. V. Vedenyapin, M. A. Negmatov, “On the topology of steady-state solutions of hydrodynamic and vortex consequences of the Vlasov equation and the Hamilton–Jacobi method”, Dokl. Math., 87:2 (2013), 240–244 | DOI | DOI | MR | Zbl
[48] I. S. Arzhanykh, Momentum fields, Nat. Lending Lib., Boston Spa, Yorkshire, 1971, 222 pp. | MR | Zbl | Zbl
[49] K. I. Dolmatov, Pole impulsov analiticheskoi dinamiki, Diss. ... kand. fiz.-matem. nauk, Tashkent, 1950, 84 pp.
[50] V. V. Kozlov, “The hydrodynamics of Hamiltonian systems”, Moscow Univ. Mech. Bull., 38:6 (1983), 9–23 | MR | Zbl
[51] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, xii+378 pp. | DOI | MR | MR | Zbl
[52] V. V. Kozlov, Obschaya teoriya vikhrei, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1998, 239 pp. | MR | Zbl
[53] L. G. Loitsyanskii, Mechanics of liquids and gases, Pergamon Press, Oxford–New York–Toronto, Ont., 1966, xii+802 pp. | MR | MR | Zbl
[54] J. Serrin, “Mathematical principles of classical fluid mechanics”, Handbuch der Physik, v. 8/1, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959, 125–263 | MR
[55] R. Courant, D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, (vol. II by R. Courant), Interscience Publishers, a division of John Wiley Sons, New York–London, 1962, xxii+830 pp. | MR | MR | Zbl | Zbl
[56] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. 1, Mechanik, 14., korr. Aufl., H. Deutsch, Frankfurt am Main, 1997, 231 pp. | MR | Zbl | Zbl
[57] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Mathematical Series, 22, Princeton Univ. Press, Princeton, N.J., 1960, viii+523 pp. | MR | MR | Zbl | Zbl
[58] V. V. Vedenyapin, N. N. Fimin, “Metod Gamiltona–Yakobi dlya negamiltonovykh sistem”, Nelineinaya dinam., 11:2 (2015), 279–286 | Zbl
[59] V. V. Vedenyapin, N. N. Fimin, “The Hamilton–Jacobi method in the non-Hamiltonian situation and the hydrodynamic substitution”, Dokl. Math., 91:2 (2015), 154–157 | DOI | DOI | MR | Zbl
[60] V. V. Vedenyapin, N. N. Fimin, “Metod Gamiltona–Yakobi dlya negamiltonovykh sistem”, Preprinty IPM im. M. V. Keldysha, 2015, 013, 18 pp.
[61] A. V. Odesskii, M. V. Pavlov, V. V. Sokolov, “Classification of integrable Vlasov-type equations”, Theoret. and Math. Phys., 154:2 (2008), 209–219 | DOI | DOI | MR | Zbl
[62] A. V. Bobylev, P. Dukes, R. Illner, H. D. Victory, Jr., “On Vlasov–Manev equations. I. Foundations, properties, and non-global existence”, J. Statist. Phys., 88:3-4 (1997), 885–911 | DOI | MR | Zbl
[63] V. E. Zakharov, “Benney equations and quasiclassical approximation in the method of the inverse problem”, Funct. Anal. Appl., 14:2 (1980), 89–98 | DOI | MR | Zbl
[64] V. V. Kozlov, D. V. Treschev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Theoret. and Math. Phys., 134:3 (2003), 339–350 | DOI | DOI | MR | Zbl
[65] V. V. Vedenyapin, S. Z. Adzhiev, “Entropy in the sense of Boltzmann and Poincaré”, Russian Math. Surveys, 69:6 (2014), 995–1029 | DOI | DOI | MR | Zbl
[66] S. Z. Adzhiev, V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model”, Comput. Math. Math. Phys., 51:11 (2011), 1942–1952 | DOI | MR | Zbl
[67] V. V. Vedenyapin, “Time averages and Boltzmann extremals”, Dokl. Math., 78:2 (2008), 686–688 | DOI | MR | Zbl