The phase-integral method in a~problem of singular perturbation theory
Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 359-390

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the development of the phase-integral method as applied to a boundary-value problem modelling the passage from discrete to continuous spectrum in the non-selfadjoint case. Our aim is to study the patterns and features of the asymptotic distribution of eigenvalues of the problem and to describe the topologically distinct types of spectrum configurations in the quasiclassical limit.
Keywords: phase integral, WKB-approximation, Bohr–Sommerfeld–Maslov quantization rule, quasiclassical asymptotics.
@article{IM2_2017_81_2_a5,
     author = {S. A. Stepin and V. V. Fufaev},
     title = {The phase-integral method in a~problem of singular perturbation theory},
     journal = {Izvestiya. Mathematics },
     pages = {359--390},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/}
}
TY  - JOUR
AU  - S. A. Stepin
AU  - V. V. Fufaev
TI  - The phase-integral method in a~problem of singular perturbation theory
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 359
EP  - 390
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/
LA  - en
ID  - IM2_2017_81_2_a5
ER  - 
%0 Journal Article
%A S. A. Stepin
%A V. V. Fufaev
%T The phase-integral method in a~problem of singular perturbation theory
%J Izvestiya. Mathematics 
%D 2017
%P 359-390
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/
%G en
%F IM2_2017_81_2_a5
S. A. Stepin; V. V. Fufaev. The phase-integral method in a~problem of singular perturbation theory. Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 359-390. http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/