The phase-integral method in a~problem of singular perturbation theory
Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 359-390
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the development of the phase-integral method
as applied to a boundary-value problem modelling the passage from discrete
to continuous spectrum in the non-selfadjoint case. Our aim is to study
the patterns and features of the asymptotic distribution of eigenvalues
of the problem and to describe the topologically distinct types
of spectrum configurations in the quasiclassical limit.
Keywords:
phase integral, WKB-approximation, Bohr–Sommerfeld–Maslov quantization rule, quasiclassical asymptotics.
@article{IM2_2017_81_2_a5,
author = {S. A. Stepin and V. V. Fufaev},
title = {The phase-integral method in a~problem of singular perturbation theory},
journal = {Izvestiya. Mathematics },
pages = {359--390},
publisher = {mathdoc},
volume = {81},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/}
}
S. A. Stepin; V. V. Fufaev. The phase-integral method in a~problem of singular perturbation theory. Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 359-390. http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/