The phase-integral method in a~problem of singular perturbation theory
Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 359-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the development of the phase-integral method as applied to a boundary-value problem modelling the passage from discrete to continuous spectrum in the non-selfadjoint case. Our aim is to study the patterns and features of the asymptotic distribution of eigenvalues of the problem and to describe the topologically distinct types of spectrum configurations in the quasiclassical limit.
Keywords: phase integral, WKB-approximation, Bohr–Sommerfeld–Maslov quantization rule, quasiclassical asymptotics.
@article{IM2_2017_81_2_a5,
     author = {S. A. Stepin and V. V. Fufaev},
     title = {The phase-integral method in a~problem of singular perturbation theory},
     journal = {Izvestiya. Mathematics },
     pages = {359--390},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/}
}
TY  - JOUR
AU  - S. A. Stepin
AU  - V. V. Fufaev
TI  - The phase-integral method in a~problem of singular perturbation theory
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 359
EP  - 390
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/
LA  - en
ID  - IM2_2017_81_2_a5
ER  - 
%0 Journal Article
%A S. A. Stepin
%A V. V. Fufaev
%T The phase-integral method in a~problem of singular perturbation theory
%J Izvestiya. Mathematics 
%D 2017
%P 359-390
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/
%G en
%F IM2_2017_81_2_a5
S. A. Stepin; V. V. Fufaev. The phase-integral method in a~problem of singular perturbation theory. Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 359-390. http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a5/

[1] A. A. Dorodnitsyn, “Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order”, Amer. Math. Soc. Transl. Ser. 2, 16, Amer. Math. Soc., Providence, R.I., 1960, 1–101 | MR | MR | Zbl | Zbl

[2] V. P. Maslov, “O predelnom povedenii nekotorykh kvantovo-mekhanicheskikh velichin”, Dokl. AN SSSR, 94:4 (1954), 623–626 | MR | Zbl

[3] Yu. N. Dnestrovskii, D. P. Kostomarov, “Asymptotic forms of the eigenvalues of nonselfadjoint boundary value problems”, U.S.S.R. Comput. Math. Math. Phys., 4:2 (1964), 77–91 | DOI | MR | Zbl

[4] C. M. Bender, Tai Tsun Wu, “Anharmonic oscillator”, Phys. Rev. (2), 184 (1969), 1231–1260 | DOI | MR

[5] M. V. Fedorjuk, “Asymptotic properties of eigenvalues and eigenfunctions of the Sturm–Liouville operator with a complex-valued polynomial potential. I”, Differential Equations, 8 (1974), 616–620 | MR | Zbl

[6] S. A. Stepin, “Non-self-conjugate singular perturbations: a model of transition from a discrete to a continuous spectrum”, Russian Math. Surveys, 50:6 (1995), 1311–1313 | DOI | MR | Zbl

[7] S. A. Stepin, A. A. Arzhanov, “Quasiclassical spectral asymptotics and the Stokes phenomenon for the Weber equation”, Dokl. Math., 63:3 (2001), 306–309 | MR | Zbl

[8] P. G. Drazin, W. H. Reid, Hydrodynamic stability, Cambridge Monogr. Mech. Appl. Math., Cambridge Univ. Press, Cambridge–New York, 1982, xiv+527 pp. | DOI | MR | Zbl

[9] S. A. Stepin, “The Rayleigh hydrodynamical problem: a theorem on eigenfunction expansion and the stability of plane-parallel flows”, Izv. Math., 60:6 (1996), 1293–1316 | DOI | DOI | MR | Zbl

[10] A. G. Aslanyan, V. B. Lidskii, Raspredelenie sobstvennykh chastot tonkikh uprugikh obolochek, Nauka, M., 1974, 156 pp.

[11] S. A. Stepin, “Non-selfadjoint singular perturbations and spectral properties of the Orr–Sommerfeld boundary-value problem”, Sb. Math., 188:1 (1997), 137–156 | DOI | DOI | MR | Zbl

[12] B. F. Farrell, “Optimal excitation of perturbations in viscous shear flow”, Phys. Fluids, 31:8 (1988), 2093–2102 | DOI

[13] S. C. Reddy, P. J. Schmid, D. S. Henningson, “Psuedospectra of the Orr–Sommerfeld operator”, SIAM J. Appl. Math., 53:1 (1993), 15–47 | DOI | MR | Zbl

[14] A. I. Esina, A. I. Shafarevich, “Quantization conditions on Riemannian surfaces and the semiclassical spectrum of the Schrödinger operator with complex potential”, Math. Notes, 88:2 (2010), 209–227 | DOI | DOI | MR | Zbl

[15] C. M. Bender, H. F. Jones, “WKB analysis of $\mathscr{PT}$-symmetric Sturm–Liouville problems”, J. Phys. A, 45:44 (2012), 444004, 11 pp. | DOI | MR | Zbl

[16] A. I. Esina, A. I. Shafarevich, “Analogs of Bohr–Sommerfeld–Maslov quantization conditions on Riemann surfaces and spectral series of nonself-adjoint operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181 | DOI | MR | Zbl

[17] A. I. Esina, A. I. Shafarevich, “Semiclassical asymptotics of eigenvalues for non-selfadjoint operators and quantization conditions on Riemann surfaces”, Acta Polytechnica, 54:2 (2014), 101–105 | DOI

[18] S. A. Stepin, V. V. Fufaev, “Phase integral method in the problem of quasiclassical localization of spectra”, Dokl. Math., 91:3 (2015), 318–322 | DOI | MR | Zbl

[19] I. Giordanelli, G. M. Graf, “The real spectrum of the imaginary cubic oscillator: an expository proof”, Ann. Henri Poincaré, 16:1 (2015), 99–112 | DOI | MR | Zbl

[20] K. C. Shin, “On the reality of the eigenvalues for a class of $\mathscr{PT}$-symmetric operators”, Comm. Math. Phys., 229:3 (2002), 543–564 | DOI | MR | Zbl

[21] S. A. Stepin, V. A. Titov, “On the concentration of spectrum in the model problem of singular perturbation theory”, Dokl. Math., 75:2 (2007), 197–200 | DOI | MR | Zbl

[22] A. Ya. Povzner, “Stokes constants for Schrödinger equation with polynomial potential”, Theoret. and Math. Phys., 51:1 (1982), 350–362 | DOI | MR | Zbl

[23] M. V. Fedoryuk, Asymptotic analysis. Linear ordinary differential equations, Springer-Verlag, Berlin, 1993, viii+363 pp. | DOI | MR | MR | Zbl | Zbl

[24] J. Heading, An introduction to phase-integral methods, Methuen Co., Ltd., London; John Wiley Sons, Inc., New York, 1962, vii+160 pp. | MR | Zbl | Zbl

[25] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N.F.), 18, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl | Zbl

[26] C. Pommerenke, Univalent functions, With a chapter on quadratic differentials by G. Jensen, Studia Mathematica/Mathematische Lehrbücher, 25, Vandenhoeck Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl

[27] V. V. Fufaev, “O liniyakh urovnya garmonicheskikh funktsii, svyazannykh s nekotorymi abelevymi integralami”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh., 2017, no. 1, 16–25

[28] W. Wasow, “Asymptotic expansions for ordinary differential equations”, Pure Appl. Math., 14, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1965, ix+362 pp. | MR | Zbl | Zbl