New integral representations of the Maslov canonical operator in singular charts
Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 286-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a new integral representation of the Maslov canonical operator convenient in numerical-analytical calculations, present an algorithm implementing this representation, and consider a number of examples.
Keywords: Maslov canonical operator, Fourier integral operator, integral representation, asymptotic formula.
@article{IM2_2017_81_2_a3,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii and A. I. Shafarevich},
     title = {New integral representations of the {Maslov} canonical operator in singular charts},
     journal = {Izvestiya. Mathematics },
     pages = {286--328},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a3/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
AU  - A. I. Shafarevich
TI  - New integral representations of the Maslov canonical operator in singular charts
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 286
EP  - 328
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a3/
LA  - en
ID  - IM2_2017_81_2_a3
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%A A. I. Shafarevich
%T New integral representations of the Maslov canonical operator in singular charts
%J Izvestiya. Mathematics 
%D 2017
%P 286-328
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a3/
%G en
%F IM2_2017_81_2_a3
S. Yu. Dobrokhotov; V. E. Nazaikinskii; A. I. Shafarevich. New integral representations of the Maslov canonical operator in singular charts. Izvestiya. Mathematics , Tome 81 (2017) no. 2, pp. 286-328. http://geodesic.mathdoc.fr/item/IM2_2017_81_2_a3/

[1] V. P. Maslov, Théorie des perturbations et méthodes asymptotiques, Etudes mathematiques, Dunod, Paris; Gauthier-Villars, Paris, 1972, xvi+384 pp. | Zbl

[2] V. P. Maslov, M. V. Fedoryuk, Semi-classical approximation in quantum mechanics, Math. Phys. Appl. Math., 7, D. Reidel Publishing Co., Dordrecht–Boston, Mass., 1981, ix+301 pp. | MR | MR | Zbl | Zbl

[3] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988, 311 pp. | MR | Zbl

[4] B. Vainberg, Asymptotic methods in equations of mathematical physics, Gordon and Breach Sci. Publ., New York, 1989, viii+498 pp. | MR | MR | Zbl | Zbl

[5] A. S. Mishchenko, V. E. Shatalov, B. Y. Sternin, Lagrangian manifolds and the Maslov operator, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990, x+395 pp. | MR | MR | Zbl

[6] V. I. Arnol'd, “Characteristic class entering in quantization conditions”, Funct. Anal. Appl., 1:1 (1967), 1–13 | DOI | MR | Zbl

[7] V. V. Kucherenko, “The short-wave asymptotic behaviour of Green's function for the $n$-dimensional wave equation in an inhomogeneous medium”, U.S.S.R. Comput. Math. Math. Phys., 8:4 (1968), 294–302 | DOI | MR | Zbl

[8] V. S. Buslaev, “Invariantnoe opisanie kanonicheskogo operatora Maslova”, Dokl. AN SSSR, 184:1 (1969), 59–62

[9] V. S. Buslaev, “The generating integral and the canonical Maslov operator in the WKB method”, Funct. Anal. Appl., 3:3 (1969), 181–193 | DOI | MR | Zbl

[10] V. S. Buslaev, “Quantization and the WKB method”, Proc. Steklov Inst. Math., 110 (1970), 1–27 | MR | Zbl

[11] M. V. Karasev, “Connections on Lagrangian submanifolds and some quasiclassical approximation problems. I”, J. Soviet Math., 59:5 (1992), 1053–1062 | DOI | MR | Zbl

[12] L. Hörmander, The analysis of linear partial differential operators, v. 4, Grundlehren Math. Wiss., 275, Fourier integral operators, Springer-Verlag, Berlin, 1985, vii+352 pp. | MR | MR | Zbl

[13] L. Hörmander, “Fourier integral operators. I”, Acta Math., 127:1-2 (1971), 79–183 | DOI | MR | Zbl

[14] J. J. Duistermaat, L. Hörmander, “Fourier integral operators. II”, Acta Math., 128:3-4 (1972), 183–269 | DOI | MR | Zbl

[15] V. G. Danilov, Le Vu An', “On Fourier integral operators”, Math. USSR-Sb., 38:3 (1981), 293–334 | DOI | MR | Zbl

[16] A. Yoshikawa, “On Maslov's canonical operator”, Hokkaido Math. J., 4 (1975), 8–38 | DOI | MR | Zbl

[17] V. E. Nazaikinskii, V. G. Oshmyan, B. Yu. Sternin, V. E. Shatalov, “Fourier integral operators and the canonical operator”, Russian Math. Surveys, 36:2 (1981), 93–161 | DOI | MR | Zbl

[18] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics”, Theoret. and Math. Phys., 177:3 (2013), 1579–1605 | DOI | DOI | MR | Zbl

[19] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, “Fourier integrals and a new representation of Maslov's canonical operator near caustics”, Spectral theory and differential equations, Amer. Math. Soc. Transl. Ser. 2, 233, Adv. Math. Sci., 66, Amer. Math. Soc., Providence, RI, 2014, 95–115 | DOI | MR | Zbl

[20] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, “Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams”, Theoret. and Math. Phys., 180:2 (2014), 894–916 | DOI | DOI | MR | Zbl

[21] V. P. Maslov, Operational methods, Mir Publishers, Moscow, 1976, 559 pp. | MR | MR | Zbl | Zbl

[22] J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashkin, “The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field. I”, Russ. J. Math. Phys., 9:1 (2002), 14–49 | MR | Zbl

[23] J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashkin, “The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field. II”, Russ. J. Math. Phys., 9:4 (2002), 400–416 | MR | Zbl

[24] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | MR | Zbl | Zbl

[25] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, v. 1, Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982, 304 pp. ; т. 2, Монодромия и асимптотики интегралов, 1984, 336 с. ; V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, т. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 с. ; v. II, Monogr. Math., 83, Monodromy and asymptotics of integrals, 1988, viii+492 pp. | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[26] S. Yu. Dobrokhotov, D. S. Minenkov, M. Rouleux, “The Maupertuis–Jacobi principle for Hamiltonians of the form $F(x,|p|)$ in two-dimensional stationary semiclassical problems”, Math. Notes, 97:1 (2015), 42–49 | DOI | DOI | MR | Zbl

[27] V. E. Nazaikinskii, V. E. Shatalov, B. Yu. Sternin, Methods of noncommutative analysis. Theory and applications, De Gruyter Stud. Math., 22, Walter de Gruyter Co., Berlin, 1996, x+373 pp. | DOI | MR | Zbl

[28] S. Yu. Dobrokhotov, B. Tirozzi, A. I. Shafarevich, “Representations of rapidly decaying functions by the Maslov canonical operator”, Math. Notes, 82:5 (2007), 713–717 | DOI | DOI | MR | Zbl

[29] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[30] T. A. Filatova, A. I. Shafarevich, “Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere”, Theoret. and Math. Phys., 164:2 (2010), 1064–1080 | DOI | DOI | Zbl

[31] T. Ratiu, T. A. Filatova, A. I. Shafarevich, “Noncompact Lagrangian manifolds corresponding to the spectral series of the Schrödinger operator with delta-potential on a surface of revolution”, Dokl. Math., 86:2 (2012), 694–696 | DOI | MR | Zbl

[32] T. S. Ratiu, A. A. Suleimanova, A. I. Shafarevich, “Spectral series of the Schrödinger operator with delta-potential on a three-dimensional spherically symmetric manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335 | DOI | MR | Zbl