Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_1_a7, author = {A. G. Chechkina}, title = {Homogenization of spectral problems with singular perturbation of the {Steklov} condition}, journal = {Izvestiya. Mathematics }, pages = {199--236}, publisher = {mathdoc}, volume = {81}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a7/} }
A. G. Chechkina. Homogenization of spectral problems with singular perturbation of the Steklov condition. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 199-236. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a7/
[1] V. A. Steklov, Obschie metody resheniya osnovnykh zadach matematicheskoi fiziki, diss. ... dokt. fiz.-matem. nauk, Kharkovskii Imperatorskii un-t, Kharkov, 1901, 291 pp. | Zbl
[2] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique”, Ann. Sci. École Norm. Sup. (3), 19 (1902), 455–490 | MR | Zbl
[3] R. V. Isakov, “Asimptotika spektralnoi serii zadachi Steklova dlya uravneniya Laplasa v «tonkoi» oblasti s negladkoi granitsei”, Matem. zametki, 44:5 (1988), 694–696 | Zbl
[4] J. F. Bonder, P. Groisman, J. D. Rossi, “Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach”, Ann. Math. Pura Appl. (4), 186:2 (2007), 341–358 | DOI | MR | Zbl
[5] E. Pérez, “On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem”, Discrete Contin. Dyn. Syst. Ser. B, 7:4 (2007), 859–883 | DOI | MR | Zbl
[6] S. A. Nazarov, J. Taskinen, “On the spectrum of the Steklov problem in a domain with a peak.”, Vestnik St. Petersburg Univ. Math., 41:1 (2008), 45–52 | DOI | MR | Zbl
[7] N. N. Abdullazade, G. A. Chechkin, “Perturbation of the Steklov problem on a small part of the boundary”, J. Math. Sci. (N. Y.), 196:4 (2014), 441–451 | DOI | Zbl
[8] V. Chiado Piat, S. S. Nazarov, A. Piatnitski, “Steklov problems in perforated domains with a coefficient of indefinite sign”, Netw. Heterog. Media, 7:1 (2012), 151–178 | DOI | MR | Zbl
[9] A. G. Chechkina, J. Math. Sci. (N. Y.), 162:3 (2009), Convergence of solutions and eigenelements of Steklov type boundary value problems with boundary conditions of rapidly varying type | DOI | MR
[10] A. G. Chechkina, “On singular perturbations of a Steklov-type problem with asymptotically degenerating spectrum”, Dokl. Math., 84:2 (2011), 695–698 | DOI | MR | Zbl
[11] G. A. Chechkin, T. P.Chechkina, “Plane scalar analog of linear degenerate hydrodynamic problem with nonperiodic microstructure of free surface”, J. Math. Sci. (N. Y.), 207:2 (2015), 336–349 | DOI | MR | Zbl
[12] G. A. Chechkin, “Averaging of boundary value problems with a singular perturbation of the boundary conditions”, Russian Acad. Sci. Sb. Math., 79:1 (1994), 191–222 | DOI | MR | Zbl
[13] G. A. Chechkin, O. A. Oleinik, “On asymptotics of solutions and eigenvalues of the boundary value problem with rapidly alternating boundary conditions for the system of elasticity”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7:1 (1996), 5–15 | MR | Zbl
[14] A. Yu. Belyaev, G. A. Chechkin, “Averaging operators with boundary conditions of fine-scaled structure”, Math. Notes, 65:4 (1999), 418–429 | DOI | DOI | MR | Zbl
[15] E. I. Doronina, G. A. Chechkin, “On the averaging of solutions of a second order elliptic equation with nonperiodic rapidly changing boundary conditions”, Moscow Univ. Math. Bull., 56:1 (2001), 14–19 | MR | Zbl
[16] G. A. Chechkin, E. I. Doronina, “On the asymptotics of the spectrum of a boundary value problem with nonperiodic rapidly alternating boundary conditions”, Funct. Differ. Equ., 8:1-2 (2001), 111–122 | MR | Zbl
[17] R. R. Gadyl'shin, G. A. Chechkin, “A boundary value problem for the Laplacian with rapidly changing type of boundary conditions in a multi-dimensional domain”, Siberian Math. J., 40:2 (1999), 229–244 | MR | Zbl
[18] A. G. Belyaev, G. A. Chechkin, R. R. Gadyl'shin, “Effective membrane permeability: estimates and low concentration asymptotics”, SIAM J. Appl. Math., 60:1 (1999), 84–108 | DOI | MR | Zbl
[19] G. A. Chechkin, R. R. Gadyl'shin, “On boundary-value problems for the Laplacian in bounded domains with micro inhomogeneous structure of the boundaries”, Acta Math. Sin. (Engl. Ser.), 23:2 (2007), 237–248 | DOI | MR | Zbl
[20] G. A. Chechkin, “The asymptotic expansion of the solution of a boundary-value problem with rapidly alternating type of boundary conditions”, J. Math. Sci. (N. Y.), 85:6 (1997), 2440–2449 | DOI | MR | Zbl
[21] D. I. Borisov, “Boundary-value problem in a cylinder with frequently changing type of boundary conditions”, Sb. Math., 193:7 (2002), 977–1008 | DOI | DOI | MR | Zbl
[22] D. I. Borisov, “Asymptotics and estimates of the convergence rate in a three-dimensional boundary-value problem with rapidly alternating boundary conditions”, Siberian Math. J., 45:2 (2004), 222–240 | DOI | MR | Zbl
[23] V. P. Mikhajlov, Partial differential equations, Mir, Moscow, 1978, 396 pp. | MR | MR | Zbl | Zbl
[24] G. A. Chechkin, A. L. Piatnitski, A. S. Shamaev, Homogenization. Methods and applications, Transl. Math. Monogr., 234, Amer. Math. Soc., Providence, RI, 2007, x+234 pp. | MR | Zbl
[25] V. A. Kondrat'ev, O. A. Olejnik, “Time-periodic solutions of a second-order parabolic equation in exterior domains”, Moscow Univ. Math. Bull., 40:4 (1985), 59–73 | MR | Zbl
[26] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI | MR | Zbl | Zbl
[27] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. | MR | MR | Zbl | Zbl
[28] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Grad. Texts in Math., 93, 104, 124, Springer-Verlag, New York, 1984, 1985, 1990, xv+464 pp., xv+430 pp., x+416 pp. | MR | MR | MR | MR | Zbl | Zbl
[29] V. A. Sadovnichii, A. G. Chechkina, “On estimate of eigenfunctions of the Steklov-type problem with a small parameter in the case of a limit spectrum degeneration”, Ufa Math. J., 3:3 (2011), 122–134 | MR | Zbl
[30] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl
[31] G. A. Chechkin, Yu. O. Koroleva, L.-E. Persson, “On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure”, J. Inequal. Appl., 2007 (2007), 34138, 13 pp. | DOI | MR | Zbl
[32] M. Lobo, E. Pérez, “Boundary homogenization of certain elliptic problems for cylindrical bodies”, Bull. Sci. Math., 116:3 (1992), 399–426 | MR | Zbl
[33] R. R. Gadyl'shin, “Asymptotic properties of an eigenvalue of a problem for a singularly perturbed self-adjoint elliptic equation with a small parameter in the boundary conditions”, Differential Equations, 22 (1986), 474–483 | MR | Zbl
[34] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, ix+398 pp. | DOI | MR | MR | Zbl
[35] O. A. Oleĭnik, A. S. Shamaev, G. A. Yosifian, Mathematical problems in elasticity and homogenization, Stud. Math. Appl., 26, North-Holland Publishing Co., Amsterdam, 1992, xiv+398 pp. | MR | MR | Zbl | Zbl