Homogenization of spectral problems with singular perturbation of the Steklov condition
Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 199-236

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider spectral problems with Dirichlet- and Steklov-type conditions on alternating small pieces of the boundary. We study the behaviour of the eigenfunctions of such problems as the small parameter (describing the size of the boundary microstructure) tends to zero. Using general methods of Oleinik, Yosifian and Shamaev, we give bounds for the deviation of these eigenfunctions from those of the limiting problem in various cases.
Keywords: spectral problem, Steklov problem, homogenization, asymptotics.
@article{IM2_2017_81_1_a7,
     author = {A. G. Chechkina},
     title = {Homogenization of spectral problems with singular perturbation of the {Steklov} condition},
     journal = {Izvestiya. Mathematics },
     pages = {199--236},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a7/}
}
TY  - JOUR
AU  - A. G. Chechkina
TI  - Homogenization of spectral problems with singular perturbation of the Steklov condition
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 199
EP  - 236
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a7/
LA  - en
ID  - IM2_2017_81_1_a7
ER  - 
%0 Journal Article
%A A. G. Chechkina
%T Homogenization of spectral problems with singular perturbation of the Steklov condition
%J Izvestiya. Mathematics 
%D 2017
%P 199-236
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a7/
%G en
%F IM2_2017_81_1_a7
A. G. Chechkina. Homogenization of spectral problems with singular perturbation of the Steklov condition. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 199-236. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a7/