Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2017_81_1_a5, author = {S. P. Khekalo}, title = {Dunkl--Darboux differential-difference operators}, journal = {Izvestiya. Mathematics }, pages = {156--178}, publisher = {mathdoc}, volume = {81}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a5/} }
S. P. Khekalo. Dunkl--Darboux differential-difference operators. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 156-178. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a5/
[1] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl
[2] Yu. Yu. Berest, A. P. Veselov, “Huygens' principle and integrability”, Russian Math. Surveys, 49:6 (1994), 5–77 | DOI | MR | Zbl
[3] V. M. Buchstaber, G. Felder, A. P. Veselov, “Elliptic Dunkl operators, root systems, and functional equations”, Duke Math. J., 76:3 (1994), 885–911 ; arXiv: hep-th/9403178 | DOI | MR | Zbl
[4] V. Golubeva, V. Leksin, “Heisenberg–Weyl operator algebras associated to the models of Calogero–Sutherland type and isomorfism of rational and trigonometric models”, J. Math. Sci. (N. Y.), 98:3 (2000), 291–318 | DOI | MR | Zbl
[5] V. V. Mescheryakov, Differentsialno-raznostnye operatory: svoistva, prilozheniya, obobscheniya, LAP LAMBERT Acad. Publ., Saarbrücken, Germany, 2010, 140 pp.
[6] E. M. Opdam, Lecture notes on Dunkl operators for real and complex reflection groups, MSJ Memoirs, 8, Math. Soc. Japan, Tokyo, 2000, viii+90 pp. | MR | Zbl
[7] K. L. Stellmacher, “Ein Beispeil einer Huyghensschen Differentialgleichung”, Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. Math.-Phys. Chem. Abt., 1953 (1953), 133–138 | MR | Zbl
[8] J. E. Lagnese, K. L. Stellmacher, “A method of generating classes of Huygens' operators”, J. Math. Mech., 17:5 (1967), 461–472 | MR | Zbl
[9] N. H. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1985, xv+394 pp. | MR | MR | Zbl | Zbl
[10] J. L. Burchnall, T. W. Chaundy, “A set of differential equations which can be solved by polynomials”, Proc. London Math. Soc., S2-30:1 (1930), 401–414 | DOI | MR | Zbl
[11] M. Rösler, “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192:3 (1998), 519–542 | DOI | MR | Zbl
[12] V. V. Mescheryakov, S. P. Khekalo, “Sobstvennye funktsii ratsionalnogo operatora Dunkla na pryamoi”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam: tezisy dokladov (Suzdal, 2010), MIAN, M., 2010, 133
[13] S. Khekalo, “Special functions associated with the Darboux–Dunkl differential-difference operators”, Days on diffraction, International conference, abstracts (St. Petersburg, 2012), POMI, St. Petersburg, 2012, 60–61
[14] D. S. Kuznetsov, Spetsialnye funktsii, 2-e izd., Vysshaya shkola, M., 1965, 423 pp. | MR | Zbl
[15] Yu. Berest, “Hierarchies of Huygens' operators and Hadamard's conjecture”, Acta Appl. Math., 53:2 (1998), 125–185 | DOI | MR | Zbl
[16] S. P. Khekalo, “The Cayley–Laplace differential operator on the space of rectangular matrices”, Izv. Math., 69:1 (2005), 191–219 | DOI | DOI | MR | Zbl
[17] S. P. Khekalo, “Stepwise gauge equivalence of differential operators”, Math. Notes, 77:6 (2005), 843–854 | DOI | DOI | MR | Zbl
[18] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, Addison-Wesley Publ. Co., Reading, MA, 1994, xiv+657 pp. | MR | Zbl