Dunkl--Darboux differential-difference operators
Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 156-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a natural generalization, we construct and study analogues of Dunkl differential-difference operators on the line. These analogues turn out to be closely connected with the so-called Burchnall–Chaundy–Adler–Moser polynomials and, therefore, with Darboux transforms. We find the eigenfunctions of these operators.
Keywords: differential-difference operators, rational Dunkl operators, Burchnall–Chaundy–Adler–Moser polynomials, eigenfunctions.
@article{IM2_2017_81_1_a5,
     author = {S. P. Khekalo},
     title = {Dunkl--Darboux differential-difference operators},
     journal = {Izvestiya. Mathematics },
     pages = {156--178},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a5/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - Dunkl--Darboux differential-difference operators
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 156
EP  - 178
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a5/
LA  - en
ID  - IM2_2017_81_1_a5
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T Dunkl--Darboux differential-difference operators
%J Izvestiya. Mathematics 
%D 2017
%P 156-178
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a5/
%G en
%F IM2_2017_81_1_a5
S. P. Khekalo. Dunkl--Darboux differential-difference operators. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 156-178. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a5/

[1] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl

[2] Yu. Yu. Berest, A. P. Veselov, “Huygens' principle and integrability”, Russian Math. Surveys, 49:6 (1994), 5–77 | DOI | MR | Zbl

[3] V. M. Buchstaber, G. Felder, A. P. Veselov, “Elliptic Dunkl operators, root systems, and functional equations”, Duke Math. J., 76:3 (1994), 885–911 ; arXiv: hep-th/9403178 | DOI | MR | Zbl

[4] V. Golubeva, V. Leksin, “Heisenberg–Weyl operator algebras associated to the models of Calogero–Sutherland type and isomorfism of rational and trigonometric models”, J. Math. Sci. (N. Y.), 98:3 (2000), 291–318 | DOI | MR | Zbl

[5] V. V. Mescheryakov, Differentsialno-raznostnye operatory: svoistva, prilozheniya, obobscheniya, LAP LAMBERT Acad. Publ., Saarbrücken, Germany, 2010, 140 pp.

[6] E. M. Opdam, Lecture notes on Dunkl operators for real and complex reflection groups, MSJ Memoirs, 8, Math. Soc. Japan, Tokyo, 2000, viii+90 pp. | MR | Zbl

[7] K. L. Stellmacher, “Ein Beispeil einer Huyghensschen Differentialgleichung”, Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. Math.-Phys. Chem. Abt., 1953 (1953), 133–138 | MR | Zbl

[8] J. E. Lagnese, K. L. Stellmacher, “A method of generating classes of Huygens' operators”, J. Math. Mech., 17:5 (1967), 461–472 | MR | Zbl

[9] N. H. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1985, xv+394 pp. | MR | MR | Zbl | Zbl

[10] J. L. Burchnall, T. W. Chaundy, “A set of differential equations which can be solved by polynomials”, Proc. London Math. Soc., S2-30:1 (1930), 401–414 | DOI | MR | Zbl

[11] M. Rösler, “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192:3 (1998), 519–542 | DOI | MR | Zbl

[12] V. V. Mescheryakov, S. P. Khekalo, “Sobstvennye funktsii ratsionalnogo operatora Dunkla na pryamoi”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam: tezisy dokladov (Suzdal, 2010), MIAN, M., 2010, 133

[13] S. Khekalo, “Special functions associated with the Darboux–Dunkl differential-difference operators”, Days on diffraction, International conference, abstracts (St. Petersburg, 2012), POMI, St. Petersburg, 2012, 60–61

[14] D. S. Kuznetsov, Spetsialnye funktsii, 2-e izd., Vysshaya shkola, M., 1965, 423 pp. | MR | Zbl

[15] Yu. Berest, “Hierarchies of Huygens' operators and Hadamard's conjecture”, Acta Appl. Math., 53:2 (1998), 125–185 | DOI | MR | Zbl

[16] S. P. Khekalo, “The Cayley–Laplace differential operator on the space of rectangular matrices”, Izv. Math., 69:1 (2005), 191–219 | DOI | DOI | MR | Zbl

[17] S. P. Khekalo, “Stepwise gauge equivalence of differential operators”, Math. Notes, 77:6 (2005), 843–854 | DOI | DOI | MR | Zbl

[18] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, Addison-Wesley Publ. Co., Reading, MA, 1994, xiv+657 pp. | MR | Zbl