On special Lie algebras having a~faithful module with Krull dimension
Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 91-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

For special Lie algebras we prove an analogue of Markov's theorem on $\mathrm{PI}$-algebras having a faithful module with Krull dimension: the solubility of the prime radical. We give an example of a semiprime Lie algebra that has a faithful module with Krull dimension but cannot be represented as a subdirect product of finitely many prime Lie algebras. We prove a criterion for a semiprime Lie algebra to be representable as such a subdirect product.
Keywords: special Lie algebra, prime radical of a Lie algebra, faithful module with Krull dimension.
@article{IM2_2017_81_1_a2,
     author = {O. A. Pikhtilkova and S. A. Pikhtilkov},
     title = {On special {Lie} algebras having a~faithful module with {Krull} dimension},
     journal = {Izvestiya. Mathematics },
     pages = {91--98},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a2/}
}
TY  - JOUR
AU  - O. A. Pikhtilkova
AU  - S. A. Pikhtilkov
TI  - On special Lie algebras having a~faithful module with Krull dimension
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 91
EP  - 98
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a2/
LA  - en
ID  - IM2_2017_81_1_a2
ER  - 
%0 Journal Article
%A O. A. Pikhtilkova
%A S. A. Pikhtilkov
%T On special Lie algebras having a~faithful module with Krull dimension
%J Izvestiya. Mathematics 
%D 2017
%P 91-98
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a2/
%G en
%F IM2_2017_81_1_a2
O. A. Pikhtilkova; S. A. Pikhtilkov. On special Lie algebras having a~faithful module with Krull dimension. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 91-98. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a2/

[1] R. Gordon, J. C. Robson, Krull dimension, Mem. Amer. Math. Soc., 133, Amer. Math. Soc., Providence, RI, 1973, ii+78 pp. | MR | Zbl

[2] V. T. Markov, “O $\mathrm{PI}$-koltsakh, imeyuschikh tochnyi modul s razmernostyu Krullya”, Fundament. i prikl. matem., 1:2 (1995), 557–559 | MR | Zbl

[3] V. T. Markov, “$\mathrm{PI}$-rings and semiprime rings having faithful modules with Krull dimension”, Algebra Logic, 36:5 (1997), 330–335 | MR | Zbl

[4] V. N. Latyshev, “Ob algebrakh Li s tozhdestvennymi sootnosheniyami”, Sib. matem. zhurn., 4:4 (1963), 821–829 | MR | Zbl

[5] N. Jacobson, $\mathrm{PI}$-algebras. An introduction, Lecture Notes in Math., 441, Springer-Verlag, Berlin–New York, 1975, iv+115 pp. | DOI | MR | Zbl

[6] K. I. Beidar, S. A. Pikhtilkov, “Pervichnyi radikal spetsialnykh algebr Li”, Fundament. i prikl. matem., 6:3 (2000), 643–648 | MR | Zbl

[7] A. V. Mikhalev, I. N. Balaba, S. A. Pikhtilkov, “Prime radicals of graded $\Omega$-groups”, J. Math. Sci. (N. Y.), 149:2 (2008), 1146–1156 | DOI | MR | Zbl

[8] A. A. Kucherov, O. A. Pikhtilkova, S. A. Pikhtilkov, “On primitive Lie algebras”, J. Math. Sci. (N. Y.), 186:4 (2012), 651–654 | DOI | Zbl

[9] K. I. Beidar, M. V. Zaicev, S. A. Pikhtil'kov, “Lie algebras with maximality condition for Abelian subalgebras”, Moscow Univ. Math. Bull., 57:5 (2003), 29–33 | MR | Zbl

[10] V. A. Andrunakievich, Yu. M. Ryabukhin, Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979, 496 pp. | MR | Zbl

[11] I. N. Herstein, Noncommutative rings, Carus Math. Monogr., no. 15, Math. Assoc. America, Washington, DC, 1968, xii+199 pp. | MR | MR | Zbl | Zbl