On special Lie algebras having a~faithful module with Krull dimension
Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 91-98
Voir la notice de l'article provenant de la source Math-Net.Ru
For special Lie algebras we prove an analogue of Markov's
theorem on $\mathrm{PI}$-algebras having a faithful
module with Krull dimension: the solubility of the prime radical.
We give an example of a semiprime Lie algebra that has a faithful
module with Krull dimension but cannot be represented as a subdirect
product of finitely many prime Lie algebras. We prove a criterion for
a semiprime Lie algebra to be representable as such a subdirect product.
Keywords:
special Lie algebra, prime radical of a Lie algebra, faithful module with Krull dimension.
@article{IM2_2017_81_1_a2,
author = {O. A. Pikhtilkova and S. A. Pikhtilkov},
title = {On special {Lie} algebras having a~faithful module with {Krull} dimension},
journal = {Izvestiya. Mathematics },
pages = {91--98},
publisher = {mathdoc},
volume = {81},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a2/}
}
TY - JOUR AU - O. A. Pikhtilkova AU - S. A. Pikhtilkov TI - On special Lie algebras having a~faithful module with Krull dimension JO - Izvestiya. Mathematics PY - 2017 SP - 91 EP - 98 VL - 81 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a2/ LA - en ID - IM2_2017_81_1_a2 ER -
O. A. Pikhtilkova; S. A. Pikhtilkov. On special Lie algebras having a~faithful module with Krull dimension. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 91-98. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a2/