The spectra of rectangular lattices of quantum waveguides
Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 29-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic formulae for the spectral segments of a thin ($h\ll 1$) rectangular lattice of quantum waveguides which is described by a Dirichlet problem for the Laplacian. We establish that the structure of the spectrum of the lattice is incorrectly described by the commonly accepted quantum graph model with the traditional Kirchhoff conditions at the vertices. It turns out that the lengths of the spectral segments are infinitesimals of order $O(e^{-\delta/h})$, $\delta>0$, and $O(h)$ as $h\to+0$, and gaps of width $O(h^{-2})$ and $O(1)$ arise between them in the low-frequency and middle-frequency spectral ranges respectively. The first spectral segment is generated by the (unique) eigenvalue in the discrete spectrum of an infinite cross-shaped waveguide $\Theta$. The absence of bounded solutions of the problem in $\Theta$ at the threshold frequency means that the correct model of the lattice is a graph with Dirichlet conditions at the vertices which splits into two infinite subsets of identical edges-intervals. By using perturbations of finitely many joints, we construct any given number of discrete spectrum points of the lattice below the essential spectrum as well as inside the gaps.
Keywords: quantum waveguide, thin rectangular lattice, Dirichlet problem, gaps, Kirchhoff transmission conditions, discrete spectrum, asymptotic analysis.
@article{IM2_2017_81_1_a1,
     author = {S. A. Nazarov},
     title = {The spectra of rectangular lattices of quantum waveguides},
     journal = {Izvestiya. Mathematics },
     pages = {29--90},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a1/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - The spectra of rectangular lattices of quantum waveguides
JO  - Izvestiya. Mathematics 
PY  - 2017
SP  - 29
EP  - 90
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a1/
LA  - en
ID  - IM2_2017_81_1_a1
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T The spectra of rectangular lattices of quantum waveguides
%J Izvestiya. Mathematics 
%D 2017
%P 29-90
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a1/
%G en
%F IM2_2017_81_1_a1
S. A. Nazarov. The spectra of rectangular lattices of quantum waveguides. Izvestiya. Mathematics , Tome 81 (2017) no. 1, pp. 29-90. http://geodesic.mathdoc.fr/item/IM2_2017_81_1_a1/

[1] P. Kuchment, Hongbiao Zeng, “Asymptotics of spectra of Neumann Laplacians in thin domains”, Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, 199–213 | DOI | MR | Zbl

[2] P. Exner, O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys., 54:1 (2005), 77–115 | DOI | MR | Zbl

[3] S. A. Nazarov, K. Pileckas, “Asymptotic conditions at infinity for the Stokes and Navier–Stokes problems in domains with cylindrical outlets to infinity”, Advances in fluid dynamics, Quad. Mat., 4, Seconda Univ. Napoli, Caserta, 1999, 141–243 | MR | Zbl

[4] F. Blanc, O. Gipouloux, G. Panasenko, A. M. Zine, “Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure”, Math. Models Methods Appl. Sci., 9:9 (1999), 1351–1378 | DOI | MR | Zbl

[5] L. Pauling, “The diamagnetic anisotropy of aromatic molecules”, J. Chem. Phys., 4:10 (1936), 673–677 | DOI

[6] K. Ruedenberg, C. W. Scherr, “Free-electron network model for conjugated systems. I. Theory”, J. Chem. Phys., 21:9 (1953), 1565–1581 | DOI

[7] H. Le Dret, “Modeling of the junction between two rods”, J. Math. Pures Appl. (9), 68:3 (1989), 365–397 | MR | Zbl

[8] S. A. Nazarov, A. S. Slutskiĭ, “Arbitrary plane systems of anisotropic beams”, Proc. Steklov Inst. Math., 236 (2002), 222–249 | MR | Zbl

[9] S. A. Nazarov, A. S. Slutskii, “Asymptotic analysis of an arbitrary spatial system of thin rods”, Proceedings of the St. Petersburg Mathematical Society, v. X, Amer. Math. Soc. Transl. Ser. 2, 214, Amer. Math. Soc., Providence, RI, 2005, 59–107 | Zbl

[10] T. Petrosky, S. Subbiah, “Electron waveguide as a model of a giant atom with a dressing field”, Phys. E, 19:1-2 (2003), 230–235 | DOI

[11] P. Kuchment, “Graph models for waves in thin structures”, Waves Random Media, 12:4 (2002), R1–R24 | DOI | MR | Zbl

[12] P. Kuchment, O. Post, “On the spectra of carbon nano-structures”, Comm. Math. Phys., 275:3 (2007), 805–826 | DOI | MR | Zbl

[13] Quantum graphs and their applications, Waves Random Media, 14, no. 1, special issue, ed. P. Kuchment, 2004

[14] E. Korotyaev, I. Lobanov, “Schrödinger operators on zigzag nanotubes”, Ann. Henri Poincaré, 8:6 (2007), 1151–1176 | DOI | MR | Zbl

[15] A. V. Badanin, E. L. Korotyaev, “A magnetic Schrödinger operator on a periodic graph”, Sb. Math., 201:10 (2010), 1403–1448 | DOI | DOI | MR | Zbl

[16] I. Yu. Popov, A. N. Skorynina, I. V. Blinova, “On the existence of point spectrum for branching strips quantum graph”, J. Math. Phys., 55:3 (2014), 033504, 19 pp. | DOI | MR | Zbl

[17] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752 | DOI | MR | Zbl

[18] S. A. Nazarov, “On the spectrum of the Laplace operator on the infinite Dirichlet ladder”, St. Petersburg Math. J., 23:6 (2012), 1023–1045 | DOI | MR | Zbl

[19] S. A. Nazarov, “Discrete spectrum of cross-shaped quantum waveguides”, J. Math. Sci. (N. Y.), 196:3 (2014), 346–376 | DOI | Zbl

[20] S. A. Nazarov, “Bounded solutions in a $\mathrm{T}$-shaped waveguide and the spectral properties of the Dirichlet ladder”, Comput. Math. Math. Phys., 54:8 (2014), 1261–1279 | DOI | DOI | MR | Zbl

[21] C. Cacciapuoti, Graph-like asymptotics for the Dirichlet Laplacian in connected tubular domains, 2011, arXiv: 1102.3767v2

[22] S. A. Nazarov, “Trapped modes in a T-shaped waveguide”, Acoust. Phys., 56:6 (2010), 1004–1015 | DOI

[23] S. A. Nazarov, A. V. Shanin, “Calculation of characteristics of trapped modes in T-shaped waveguides”, Comput. Math. Math. Phys., 51:1 (2011), 96–110 | DOI | MR | Zbl

[24] S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627 | DOI | DOI | MR | Zbl

[25] S. A. Nazarov, B. A. Plamenevskiĭ, “On radiation conditions for selfadjoint elliptic problems”, Soviet Math. Dokl., 41:2 (1990), 274–277 | MR | Zbl

[26] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya. Raspoznavanie voln, Problemy matem. fiziki, 13, Izd-vo Leningr. un-ta, L., 1991, 192–244 | MR | Zbl

[27] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[28] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR | Zbl

[29] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl

[30] M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators”, Proc. Steklov Inst. Math., 171 (1987), 1–121 | MR | Zbl

[31] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl

[32] L. I. Mandelshtam, Lektsii po optike teorii otnositelnosti i kvantovoi mekhanike, Sb. trudov, v. 2, Izd-vo AN SSSR, M., 1947, 372 pp. | MR

[33] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tip. Ulrikha i Shultse, Odessa, 1874, 58 pp.

[34] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361 | DOI | Zbl

[35] M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl

[36] R. L. Shult, D. G. Ravenhall, H. D. Wyld, “Quantum bound states in a classically unbounded system of crossed wires”, Phys. Rev. B, 39:8 (1989), 5476–5479 | DOI

[37] Y. Avishai, D. Bessis, B. G. Giraud, G. Mantica, “Quantum bound states in open geometries”, Phys. Rev. B, 44:15 (1991), 8028–8034 | DOI

[38] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1967, 227–313 | MR | Zbl

[39] V. G. Maz'ya, B. A. Plamenevskiĭ, “Estimates in $L_p$ and in Hölder classes and the Miranda–Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary”, Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 1–56 | DOI | MR | Zbl

[40] S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209 | DOI | DOI | MR | Zbl

[41] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964, x+229 pp. | MR | Zbl | Zbl

[42] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[43] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Siberian Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl

[44] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49:4 (1953), 668–684 | DOI | MR | Zbl

[45] S. A. Nazarov, A. V. Shanin, “Trapped modes in angular joints of 2D waveguides”, Appl. Anal., 93:3 (2014), 572–582 | DOI | MR | Zbl

[46] S. A. Nazarov, “Two terms asymptotics of solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340 | DOI | MR | Zbl

[47] S. A. Nazarov, “Asymptotic analysis and modeling of the jointing of a massive body with thin rods”, J. Math. Sci. (N. Y.), 127:5 (2005), 2192–2262 | DOI | Zbl

[48] S. A. Nazarov, “Estimates for the accuracy of modelling boundary-value problems at the junction of domains with different limit dimensions”, Izv. Math., 68:6 (2004), 1179–1215 | DOI | DOI | MR | Zbl

[49] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbucher und Monogr., 82, Störungen isolierter Randsingularitäten, Akademie-Verlag, Berlin, 1991, 432 pp. ; v. 2, Math. Lehrbucher und Monogr., 83, Nichtlokale Störungen, 319 pp. ; V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, т. 1, 2, Oper. Theory Adv. Appl., 111, 112, Birkhäuser, Basel, 2000, xxiii+435 pp., xxiii+323 с. | MR | MR | Zbl