On extrema of the objective functional for short-time generation of single-qubit quantum gates
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1200-1212.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the extrema of the objective functional in the problem of generation of quantum gates (logical elements for quantum computations) for two-level systems with short duration of the control. We consider the problem of the existence of local but not global extrema, the so-called traps. The absence of traps was previously proved for a sufficiently long duration of the control. We prove that traps are absent for an arbitrarily small duration of the control for almost all target unitary operators and Hamiltonians. For the remaining target unitary operators and Hamiltonians we obtain a new lower bound for the duration of the control which guarantees the absence of traps.
Keywords: quantum control, qubit.
@article{IM2_2016_80_6_a9,
     author = {A. N. Pechen and N. B. Il'in},
     title = {On extrema of the objective functional for short-time generation of single-qubit quantum gates},
     journal = {Izvestiya. Mathematics },
     pages = {1200--1212},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a9/}
}
TY  - JOUR
AU  - A. N. Pechen
AU  - N. B. Il'in
TI  - On extrema of the objective functional for short-time generation of single-qubit quantum gates
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1200
EP  - 1212
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a9/
LA  - en
ID  - IM2_2016_80_6_a9
ER  - 
%0 Journal Article
%A A. N. Pechen
%A N. B. Il'in
%T On extrema of the objective functional for short-time generation of single-qubit quantum gates
%J Izvestiya. Mathematics 
%D 2016
%P 1200-1212
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a9/
%G en
%F IM2_2016_80_6_a9
A. N. Pechen; N. B. Il'in. On extrema of the objective functional for short-time generation of single-qubit quantum gates. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1200-1212. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a9/

[1] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000, xxvi+676 pp. | MR | Zbl

[2] L. Accardi, Yun Gang Lu, I. Volovich, Quantum theory and its stochastic limit, Springer-Verlag, Berlin, 2002, xx+473 pp. | DOI | MR | Zbl

[3] H.-P. Breuer, F. Petruccione, The theory of open quantum systems, Oxford Univ. Press, New York, 2002, xxii+625 pp. | MR | Zbl

[4] A. S. Trushechkin, I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, EPL, 113:3 (2016), 30005, 6 pp. | DOI

[5] A. S. Holevo, Statistical structure of quantum theory,, Lecture Notes in Physics. Monographs, 67, Springer-Verlag, Berlin, 2001, x+159 pp. | DOI | MR | Zbl

[6] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | DOI | MR | Zbl

[7] A. Garon, S. J. Glaser, D. Sugny, “Time-optimal control of $\mathrm{SU}(2)$ quantum operations”, Phys. Rev. A, 88 (2013), 043422, 24 pp. | DOI

[8] A. F. Filippov, Differential equations with discontinuous righthand sides, Math. Appl. (Soviet Ser.), 18, Kluwer Acad. Publ., Dordrecht, 1988, x+304 pp. | DOI | MR | MR | Zbl | Zbl

[9] H. A. Rabitz, M. M. Hsieh, C. M. Rosenthal, “Quantum optimally controlled transition landscapes”, Science, 303:5666 (2004), 1998–2001 | DOI

[10] Tak-San Ho, H. Rabitz, “Why do effective quantum controls appear easy to find?”, J. Photochem. Photobiol. A, 180:3 (2006), 226–240 | DOI

[11] A. N. Pechen, D. J. Tannor, “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106 (2011), 120402, 12 pp. | DOI

[12] P. de Fouquieres, S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021, 24 pp. | DOI | MR | Zbl

[13] N. Rach, M. M. Müller, T. Calarco, S. Montangero, “Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape”, Phys. Rev. A, 92 (2015), 062343, 8 pp. | DOI

[14] A. Pechen, D. Prokhorenko, R. Wu, H. Rabitz, “Control landscapes for two-level open quantum systems”, J. Phys. A, 41:4 (2008), 045205, 18 pp. | DOI | MR | Zbl

[15] K. W. Moore, A. Pechen, Xiao-Jiang Feng, J. Dominy, V. Beltrani, H. Rabitz, “Universal characteristics of chemical synthesis and property optimization”, Chem. Sci., 2:3 (2011), 417–424 | DOI

[16] A. Pechen, N. Il'in, “Trap-free manipulation in the Landau–Zener system”, Phys. Rev. A, 86:5 (2012), 052117, 6 pp. | DOI

[17] A. N. Pechen, N. B. Il'in, “Coherent control of a qubit is trap-free”, Proc. Steklov Inst. Math., 285:1 (2014), 233–240 | DOI | DOI | MR | Zbl

[18] A. N. Pechen, N. B. Il'in, “On critical points of the objective functional for maximization of qubit observables”, Russian Math. Surveys, 70:4 (2015), 782–784 | DOI | DOI | MR | Zbl

[19] J. Dominy, Tak-San Ho, H. Rabitz, “Characterization of the critical sets of quantum unitary control landscapes”, IEEE Trans. Automat. Control, 59:8 (2014), 2083–2098 | DOI | MR

[20] N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968, x+613 pp. | MR | MR | Zbl | Zbl