Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_6_a8, author = {F. N. Pakhomov}, title = {Linear $\mathrm{GLP}$-algebras and their elementary theories}, journal = {Izvestiya. Mathematics }, pages = {1159--1199}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a8/} }
F. N. Pakhomov. Linear $\mathrm{GLP}$-algebras and their elementary theories. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1159-1199. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a8/
[1] L. Beklemishev, A. Visser, “Problems in the logic of provability”, Mathematical problems from applied logic. I, Int. Math. Ser. (N. Y.), 4, Springer, New York, 2006, 77–136 | DOI | MR | Zbl
[2] R. M. Solovay, “Provability interpretations of modal logic”, Israel J. Math., 25:3-4 (1976), 287–304 | DOI | MR | Zbl
[3] G. K. Dzhaparidze, Modalno-logicheskie sredstva issledovaniya dokazuemosti, Diss. $\dots$ kand. filos. nauk, MGU, M., 1986, 177 pp.
[4] L. D. Beklemishev, “A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$”, Proc. Steklov Inst. Math., 274 (2011), 25–33 | DOI | MR | Zbl
[5] L. D. Beklemishev, “Provability algebras and proof-theoretic ordinals. I”, Ann. Pure Appl. Logic, 128:1-3 (2004), 103–123 | DOI | MR | Zbl
[6] K. N. Ignatiev, “On strong provability predicates and the associated modal logics”, J. Symbolic Logic, 58:1 (1993), 249–290 | DOI | MR | Zbl
[7] L. D. Beklemishev, J. J. Joosten, M. Vervoort, “A finitary treatment of the closed fragment of Japaridze's provability logic”, J. Logic Comput., 15:4 (2005), 447–463 | DOI | MR | Zbl
[8] A. Tarski, “Arithmetical classes and types of mathematical systems”, Bull. Amer. Math. Soc., 55 (1949), 63
[9] F. Montagna, “The undecidability of the first-order theory of diagonalizable algebras”, Studia Logica, 39:4 (1980), 355–359 | DOI | MR | Zbl
[10] C. Smoryński, “The finite inseparability of the first-order theory of diagonalisable algebras”, Studia Logica, 41:4 (1982), 347–349 | DOI | MR | Zbl
[11] S. N. Artemov, L. D. Beklemishev, “On propositional quantifiers in provability logic”, Notre Dame J. Formal Logic, 34:3 (1993), 401–419 | DOI | MR | Zbl
[12] V. Yu. Shavrukov, “Undecidability in diagonalizable algebras”, J. Symbolic Logic, 62:1 (1997), 79–116 | DOI | MR | Zbl
[13] F. N. Pakhomov, “Undecidability of the elementary theory of the semilattice of GLP-words”, Sb. Math., 203:8 (2012), 1211–1229 | DOI | DOI | MR | Zbl
[14] F. N. Pakhomov, “On elementary theories of ordinal notation systems based on reflection principles”, Proc. Steklov Inst. Math., 289:1 (2015), 194–212 | DOI | DOI | Zbl
[15] G. K. Dzhaparidze, “Polimodalnaya logika dokazuemosti”, Intensionalnye logiki i logicheskaya struktura teorii (Telavi, 1985), Metsniereba, Tbilisi, 1988, 16–48 | MR | Zbl
[16] L. D. Beklemishev, “Kripke semantics for provability logic GLP”, Ann. Pure Appl. Logic, 161:6 (2010), 756–774 | DOI | MR | Zbl
[17] L. D. Beklemishev, “Veblen hierarchy in the context of provability algebras”, Logic, methodology and philosophy of science (Oviedo, Spain, 2003), King's College Publ., London, 2005, 65–78 | Zbl
[18] G. Birkhoff, “On the structure of abstract algebras”, Proc. Cambridge Philos. Soc., 31:4 (1935), 433–454 | DOI | Zbl
[19] S. Burris, H. P. Sankappanavar, A course in universal algebra, Grad. Texts in Math., 78, Springer-Verlag, New York–Berlin, 1981, xvi+276 pp. | MR | Zbl
[20] F. W. Lawvere, Functorial semantics of algebraic theories, Ph.D. thesis, Columbia Univ., 1963, 121 pp.
[21] L. D. Beklemishev, D. Fernández-Duque, J. J. Joosten, “On provability logics with linearly ordered modalities”, Studia Logica, 102:3 (2014), 541–566 | DOI | MR | Zbl