Linear $\mathrm{GLP}$-algebras and their elementary theories
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1159-1199

Voir la notice de l'article provenant de la source Math-Net.Ru

The polymodal provability logic $\mathrm{GLP}$ was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free $\mathrm{GLP}$-algebra generated by the constants $\mathbf{0}$, $\mathbf{1}$ is decidable [1]. For every positive integer $n$ we solve the corresponding question for the logics $\mathrm{GLP}_n$ that are the fragments of $\mathrm{GLP}$ with $n$ modalities. We prove that the elementary theory of the free $\mathrm{GLP}_n$-algebra generated by the constants $\mathbf{0}$, $\mathbf{1}$ is decidable for all $n$. We introduce the notion of a linear $\mathrm{GLP}_n$-algebra and prove that all free $\mathrm{GLP}_n$-algebras generated by the constants $\mathbf{0}$, $\mathbf{1}$ are linear. We also consider the more general case of the logics $\mathrm{GLP}_\alpha$ whose modalities are indexed by the elements of a linearly ordered set $\alpha$: we define the notion of a linear algebra and prove the latter result in this case.
Keywords: provability logics, free algebras, elementary theories, Japaridze logic.
Mots-clés : modal algebras
@article{IM2_2016_80_6_a8,
     author = {F. N. Pakhomov},
     title = {Linear $\mathrm{GLP}$-algebras and their elementary theories},
     journal = {Izvestiya. Mathematics },
     pages = {1159--1199},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a8/}
}
TY  - JOUR
AU  - F. N. Pakhomov
TI  - Linear $\mathrm{GLP}$-algebras and their elementary theories
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1159
EP  - 1199
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a8/
LA  - en
ID  - IM2_2016_80_6_a8
ER  - 
%0 Journal Article
%A F. N. Pakhomov
%T Linear $\mathrm{GLP}$-algebras and their elementary theories
%J Izvestiya. Mathematics 
%D 2016
%P 1159-1199
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a8/
%G en
%F IM2_2016_80_6_a8
F. N. Pakhomov. Linear $\mathrm{GLP}$-algebras and their elementary theories. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1159-1199. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a8/