Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_6_a7, author = {Yu. N. Orlov and V. Zh. Sakbaev and O. G. Smolyanov}, title = {Unbounded random operators and {Feynman} formulae}, journal = {Izvestiya. Mathematics }, pages = {1131--1158}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a7/} }
Yu. N. Orlov; V. Zh. Sakbaev; O. G. Smolyanov. Unbounded random operators and Feynman formulae. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1131-1158. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a7/
[1] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl
[2] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev. Modern Physics, 20 (1948), 367–387 | DOI | MR
[3] R. P. Feynman, “An operation calculus having applications in quantum electrodynamics”, Physical Rev. (2), 84:1 (1951), 108–128 | DOI | MR | Zbl
[4] E. Nelson, “Feynman integrals and the Schrödinger equation”, J. Mathematical Phys., 5:3 (1964), 332–343 | DOI | MR | Zbl
[5] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Functional Analysis, 2:2 (1968), 238–242 | DOI | MR | Zbl
[6] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp. | MR | Zbl
[7] J. E. Gough, O. O. Obrezkov, O. G. Smolyanov, “Randomized Hamiltonian Feynman integrals and Shrödinger–Itô stochastic equations”, Izv. Math., 69:6 (2005), 1081–1098 | DOI | DOI | MR | Zbl
[8] N. A. Sidorova, “The Smolyanov surface measure on trajectories in a Riemannian manifold”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:3 (2004), 461–471 | DOI | MR | Zbl
[9] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl
[10] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, v. I, II, Frederick Ungar Publishing Co., New York, 1961, 1963, xi+147 pp., v+218 pp. | MR | MR | MR | Zbl | Zbl
[11] G. G. Amosov, V. Zh. Sakbaev, O. G. Smolyanov, “Linear and nonlinear liftings of states of quantum systems”, Russ. J. Math. Phys., 19:4 (2012), 417–427 | DOI | MR | Zbl
[12] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian”, Theoret. and Math. Phys., 172:1 (2012), 987–1000 | DOI | DOI | MR | Zbl
[13] F. A. Berezin, “Non-Wiener functional integrals”, Theoret. and Math. Phys., 6:2 (1971), 141–155 | DOI | MR | Zbl
[14] O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl
[15] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | DOI | MR | Zbl
[16] Yu. N. Orlov, Osnovy kvantovaniya vyrozhdennykh dinamicheskikh sistem, MFTI, M., 2004, 236 pp.
[17] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin; Academic Press, Inc., New York, 1965, xi+458 pp. | MR | MR | Zbl | Zbl
[18] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[19] V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations”, J. Math. Sci. (N. Y.), 213:3 (2016), 287–459 | DOI | MR
[20] V. V. Dodonov, V. I. Manko, V. D. Skarzhinskii, “Neodnoznachnosti variatsionnogo opisaniya klassicheskikh sistem i problema kvantovaniya”, Kvantovanie, gravitatsiya i gruppovye metody v fizike, Tr. FIAN CCCR, 152, Nauka, M., 1983, 37–89 | MR
[21] K. Yosida, E. Hewitt, “Finitely additive measures”, Trans. Amer. Math. Soc., 72 (1952), 46–66 | DOI | MR | Zbl
[22] V. Zh. Sakbaev, “Stochastic properties of degenerated quantum systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:1 (2010), 65–85 | DOI | MR | Zbl
[23] Dzh. O. Ogun, Yu. N. Orlov, V. Zh. Sakbaev, “O preobrazovanii prostranstva nachalnykh dannykh dlya zadachi Koshi s osobennostyami resheniya tipa vzryva”, Preprinty IPM im. M. V. Keldysha, 2012, 087, 31 pp.
[24] L. Tartar, “Memory effects and homogenization”, Arch. Rational Mech. Anal., 111:2 (1990), 121–133 | DOI | MR | Zbl
[25] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha, 2015, 057, 23 pp.
[26] V. Z. Sakbaev, O. G. Smolyanov, N. N. Shamarov, “Non-Gaussian Lagrangian Feynman–Kac formulas”, Dokl. Math., 90:1 (2014), 416–418 | DOI | DOI | Zbl
[27] N. A. Sidorova, O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “The surface limit of Brownian motion in tubular neighborhoods of an embedded Riemannian manifold”, J. Funct. Anal., 206:2 (2004), 391–413 | DOI | MR | Zbl
[28] J. Gough, T. S. Ratiu, O. G. Smolyanov, “Quantum anomalies and logarithmic derivatives of Feynman pseudomeasures”, Dokl. Math., 92:3 (2015), 764–768 | DOI | DOI | Zbl
[29] J. Montaldi, O. G. Smolyanov, “Transformations of measures via their generalized densities”, Russ. J. Math. Phys., 21:3 (2014), 379–385 | DOI | MR | Zbl
[30] L. C. García-Naranjo, J. Montaldi, O. G. Smolyanov, “Transformations of Feynman path integrals and generalized densities of Feynman pseudomeasures”, Dokl. Math., 93:3 (2016), 282–285 | DOI | DOI
[31] V. Zh. Sakbaev, “On the variational description of the trajectories of averaging quantum dynamical maps”, $p$-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 115–129 | DOI | MR | Zbl