Unbounded random operators and Feynman formulae
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1131-1158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study probabilistic interpolations of various quantization methods. To do this, we develop a method for finding the expectations of unbounded random operators on a Hilbert space by averaging (with the help of Feynman formulae) the random one-parameter semigroups generated by these operators (the usual method for finding the expectations of bounded random operators is generally inapplicable to unbounded ones). Although the averaging of families of semigroups generates a function that need not possess the semigroup property, the Chernoff iterates of this function approximate a certain semigroup, whose generator is taken for the expectation of the original random operator. In the case of bounded random operators, this expectation coincides with the ordinary one.
Keywords: one-parameter semigroup, random operator, Hamiltonian operator, Hamiltonian function, Chernoff's formula, Chernoff equivalence, randomization
Mots-clés : quantization, Feynman formula, probabilistic interpolation.
@article{IM2_2016_80_6_a7,
     author = {Yu. N. Orlov and V. Zh. Sakbaev and O. G. Smolyanov},
     title = {Unbounded random operators and {Feynman} formulae},
     journal = {Izvestiya. Mathematics },
     pages = {1131--1158},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a7/}
}
TY  - JOUR
AU  - Yu. N. Orlov
AU  - V. Zh. Sakbaev
AU  - O. G. Smolyanov
TI  - Unbounded random operators and Feynman formulae
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1131
EP  - 1158
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a7/
LA  - en
ID  - IM2_2016_80_6_a7
ER  - 
%0 Journal Article
%A Yu. N. Orlov
%A V. Zh. Sakbaev
%A O. G. Smolyanov
%T Unbounded random operators and Feynman formulae
%J Izvestiya. Mathematics 
%D 2016
%P 1131-1158
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a7/
%G en
%F IM2_2016_80_6_a7
Yu. N. Orlov; V. Zh. Sakbaev; O. G. Smolyanov. Unbounded random operators and Feynman formulae. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1131-1158. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a7/

[1] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl

[2] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev. Modern Physics, 20 (1948), 367–387 | DOI | MR

[3] R. P. Feynman, “An operation calculus having applications in quantum electrodynamics”, Physical Rev. (2), 84:1 (1951), 108–128 | DOI | MR | Zbl

[4] E. Nelson, “Feynman integrals and the Schrödinger equation”, J. Mathematical Phys., 5:3 (1964), 332–343 | DOI | MR | Zbl

[5] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Functional Analysis, 2:2 (1968), 238–242 | DOI | MR | Zbl

[6] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp. | MR | Zbl

[7] J. E. Gough, O. O. Obrezkov, O. G. Smolyanov, “Randomized Hamiltonian Feynman integrals and Shrödinger–Itô stochastic equations”, Izv. Math., 69:6 (2005), 1081–1098 | DOI | DOI | MR | Zbl

[8] N. A. Sidorova, “The Smolyanov surface measure on trajectories in a Riemannian manifold”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:3 (2004), 461–471 | DOI | MR | Zbl

[9] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl

[10] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, v. I, II, Frederick Ungar Publishing Co., New York, 1961, 1963, xi+147 pp., v+218 pp. | MR | MR | MR | Zbl | Zbl

[11] G. G. Amosov, V. Zh. Sakbaev, O. G. Smolyanov, “Linear and nonlinear liftings of states of quantum systems”, Russ. J. Math. Phys., 19:4 (2012), 417–427 | DOI | MR | Zbl

[12] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian”, Theoret. and Math. Phys., 172:1 (2012), 987–1000 | DOI | DOI | MR | Zbl

[13] F. A. Berezin, “Non-Wiener functional integrals”, Theoret. and Math. Phys., 6:2 (1971), 141–155 | DOI | MR | Zbl

[14] O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl

[15] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | DOI | MR | Zbl

[16] Yu. N. Orlov, Osnovy kvantovaniya vyrozhdennykh dinamicheskikh sistem, MFTI, M., 2004, 236 pp.

[17] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin; Academic Press, Inc., New York, 1965, xi+458 pp. | MR | MR | Zbl | Zbl

[18] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[19] V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations”, J. Math. Sci. (N. Y.), 213:3 (2016), 287–459 | DOI | MR

[20] V. V. Dodonov, V. I. Manko, V. D. Skarzhinskii, “Neodnoznachnosti variatsionnogo opisaniya klassicheskikh sistem i problema kvantovaniya”, Kvantovanie, gravitatsiya i gruppovye metody v fizike, Tr. FIAN CCCR, 152, Nauka, M., 1983, 37–89 | MR

[21] K. Yosida, E. Hewitt, “Finitely additive measures”, Trans. Amer. Math. Soc., 72 (1952), 46–66 | DOI | MR | Zbl

[22] V. Zh. Sakbaev, “Stochastic properties of degenerated quantum systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:1 (2010), 65–85 | DOI | MR | Zbl

[23] Dzh. O. Ogun, Yu. N. Orlov, V. Zh. Sakbaev, “O preobrazovanii prostranstva nachalnykh dannykh dlya zadachi Koshi s osobennostyami resheniya tipa vzryva”, Preprinty IPM im. M. V. Keldysha, 2012, 087, 31 pp.

[24] L. Tartar, “Memory effects and homogenization”, Arch. Rational Mech. Anal., 111:2 (1990), 121–133 | DOI | MR | Zbl

[25] L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Formuly Feinmana dlya usredneniya polugrupp, porozhdaemykh operatorami tipa Shredingera”, Preprinty IPM im. M. V. Keldysha, 2015, 057, 23 pp.

[26] V. Z. Sakbaev, O. G. Smolyanov, N. N. Shamarov, “Non-Gaussian Lagrangian Feynman–Kac formulas”, Dokl. Math., 90:1 (2014), 416–418 | DOI | DOI | Zbl

[27] N. A. Sidorova, O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “The surface limit of Brownian motion in tubular neighborhoods of an embedded Riemannian manifold”, J. Funct. Anal., 206:2 (2004), 391–413 | DOI | MR | Zbl

[28] J. Gough, T. S. Ratiu, O. G. Smolyanov, “Quantum anomalies and logarithmic derivatives of Feynman pseudomeasures”, Dokl. Math., 92:3 (2015), 764–768 | DOI | DOI | Zbl

[29] J. Montaldi, O. G. Smolyanov, “Transformations of measures via their generalized densities”, Russ. J. Math. Phys., 21:3 (2014), 379–385 | DOI | MR | Zbl

[30] L. C. García-Naranjo, J. Montaldi, O. G. Smolyanov, “Transformations of Feynman path integrals and generalized densities of Feynman pseudomeasures”, Dokl. Math., 93:3 (2016), 282–285 | DOI | DOI

[31] V. Zh. Sakbaev, “On the variational description of the trajectories of averaging quantum dynamical maps”, $p$-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 115–129 | DOI | MR | Zbl