Radial parts of Haar measures and probability distributions on the space of rational matrix-valued functions
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1118-1130.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the space $\mathcal C$ of conjugacy classes of the unitary group $\mathrm U(n+m)$ with respect to a smaller unitary group $\mathrm U(m)$. It is known that to every element of $\mathcal C$ we can canonically assign a rational matrix-valued function (the Livshits characteristic function) on the Riemann sphere. We find an explicit expression for the natural measure on $\mathcal C$ obtained as the push-forward of the Haar measure of $\mathrm U(n+m)$ in terms of characteristic functions.
Keywords: inner functions, characteristic functions, Haar measure, Cayley transform, random functions.
@article{IM2_2016_80_6_a6,
     author = {Yu. A. Neretin},
     title = {Radial parts of {Haar} measures and probability distributions on the space of rational matrix-valued functions},
     journal = {Izvestiya. Mathematics },
     pages = {1118--1130},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a6/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Radial parts of Haar measures and probability distributions on the space of rational matrix-valued functions
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1118
EP  - 1130
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a6/
LA  - en
ID  - IM2_2016_80_6_a6
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Radial parts of Haar measures and probability distributions on the space of rational matrix-valued functions
%J Izvestiya. Mathematics 
%D 2016
%P 1118-1130
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a6/
%G en
%F IM2_2016_80_6_a6
Yu. A. Neretin. Radial parts of Haar measures and probability distributions on the space of rational matrix-valued functions. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1118-1130. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a6/

[1] Y. Peres, B. Virág, “Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process”, Acta Math., 194:1 (2005), 1–35 | DOI | MR | Zbl

[2] M. Sodin, “Zeroes of Gaussian analytic functions”, European congress of mathematics, Eur. Math. Soc., Zürich, 2005, 445–458 | MR | Zbl

[3] M. Sodin, B. Tsirelson, “Random complex zeroes. I. Asymptotic normality”, Israel J. Math., 144:1 (2004), 125–149 | DOI | MR | Zbl

[4] J. B. Hough, M. Krishnapur, Y. Peres, B. Virág, Zeros of Gaussian analytic functions and determinantal point processes, Univ. Lecture Ser., 51, Amer. Math. Soc., Providence, RI, 2009, x+154 pp. | DOI | MR | Zbl

[5] R. E. A. C. Paley, N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., New York, 1934, viii+184 pp. | MR | MR | Zbl | Zbl

[6] M. Krishnapur, “From random matrices to random analytic functions”, Ann. Probab., 37:1 (2009), 314–346 | DOI | MR | Zbl

[7] L. K. Hua, Harmonic analysis of functions of several complex variables in the classical regions, Transl. Math. Monogr., 6, Amer. Math. Soc., Providence, R.I., 1963, iv+164 pp. | MR | MR | Zbl | Zbl

[8] J. Faraut, Analysis on Lie groups. An introduction, Cambridge Stud. Adv. Math., 110, Cambridge Univ. Press, Cambridge, 2008, x+302 pp. | MR | Zbl

[9] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., XII, Academic Press, New York–London, 1962, xiv+486 pp. | MR | Zbl | Zbl

[10] Yu. A. Neretin, “Double cosets for $\operatorname{SU}(2)\times \dots \times\operatorname{SU}(2)$ and outer automorphisms of free groups”, Int. Math. Res. Not. IMRN, 2011, no. 9, 2047–2067 | DOI | MR | Zbl

[11] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Math. Soc. Monogr. (N.S.), 16, The Clarendon Press, Oxford Univ. Press, New York, 1996, xiv+417 pp. | MR | Zbl

[12] G. I. Olshanskij, “Unitary representations of infinite dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 269–463 | MR | Zbl

[13] Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions”, Anal. Math. Phys., 1:2-3 (2011), 121–138 | DOI | MR | Zbl

[14] Yu. A. Neretin, Multiplication of conjugacy classes, colligations, and characteristic functions of matrix argument, arXiv: 1211.7091

[15] Yu. A. Neretin, “Sphericity and multiplication of double cosets for infinite-dimensional classical groups”, Funct. Anal. Appl., 45:3 (2011), 225–239 | DOI | DOI | MR | Zbl

[16] H. Dym, Linear algebra in action, Grad. Stud. Math., 78, Amer. Math. Soc., Providence, RI, 2007, xvi+541 pp. | MR | Zbl

[17] Yu. A. Neretin, “On $p$-adic colligations and ‘rational maps’ of Bruhat–Tits trees”, Geometric methods in physics (Bialowieża, Poland, June 28–July 4, 2015), Trends Math., Birkhäuser/Springer, Basel, 2016, 139–158 | DOI | Zbl

[18] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[19] V. P. Potapov, “The multiplicative structure of $J$-contractive matrix functions”, Amer. Math. Soc. Transl. (2), 15, Amer. Math. Soc., Providence, RI, 1960, 131–243 | MR | MR | Zbl | Zbl

[20] H. Bart, I. Gohberg, M. A. Kaashoek, Minimal factorization of matrix and operator functions, Oper. Theory Adv. Appl., 1, Birkhäuser Verlag, Basel–Boston, Mass., 1979, v+227 pp. | MR | Zbl

[21] M. S. Brodskii, “Unitary operator colligations and their characteristic functions”, Russian Math. Surveys, 33:4 (1978), 159–191 | DOI | MR | Zbl

[22] E. P. Wigner, “On the connection between the distribution of poles and residues for an $R$ function and its invariant derivative”, Ann. of Math. (2), 55:1 (1952), 7–18 | DOI | MR | Zbl

[23] V. Katsnelson, “A generic Schur function is an inner one”, Interpolation theory, systems theory and related topics (Tel Aviv/Rehovot, 1999), Oper. Theory Adv. Appl., 134, Birkhäuser, Basel, 2002, 243–286 | MR | Zbl