Radial parts of Haar measures and probability distributions on the space of rational matrix-valued functions
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1118-1130

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the space $\mathcal C$ of conjugacy classes of the unitary group $\mathrm U(n+m)$ with respect to a smaller unitary group $\mathrm U(m)$. It is known that to every element of $\mathcal C$ we can canonically assign a rational matrix-valued function (the Livshits characteristic function) on the Riemann sphere. We find an explicit expression for the natural measure on $\mathcal C$ obtained as the push-forward of the Haar measure of $\mathrm U(n+m)$ in terms of characteristic functions.
Keywords: inner functions, characteristic functions, Haar measure, Cayley transform, random functions.
@article{IM2_2016_80_6_a6,
     author = {Yu. A. Neretin},
     title = {Radial parts of {Haar} measures and probability distributions on the space of rational matrix-valued functions},
     journal = {Izvestiya. Mathematics },
     pages = {1118--1130},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a6/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Radial parts of Haar measures and probability distributions on the space of rational matrix-valued functions
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1118
EP  - 1130
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a6/
LA  - en
ID  - IM2_2016_80_6_a6
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Radial parts of Haar measures and probability distributions on the space of rational matrix-valued functions
%J Izvestiya. Mathematics 
%D 2016
%P 1118-1130
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a6/
%G en
%F IM2_2016_80_6_a6
Yu. A. Neretin. Radial parts of Haar measures and probability distributions on the space of rational matrix-valued functions. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1118-1130. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a6/