Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_6_a5, author = {I. D. Kan}, title = {A strengthening of a~theorem of {Bourgain} and {Kontorovich.~IV}}, journal = {Izvestiya. Mathematics }, pages = {1094--1117}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a5/} }
I. D. Kan. A strengthening of a~theorem of Bourgain and Kontorovich.~IV. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1094-1117. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a5/
[1] S. K. Zaremba, “La méthode des “bons treillis” pour le calcul des intégerales multiples”, Applications of number theory to numerical analysis (Univ. Montreal, Montreal, Que., 1971), Academic Press, New York, 1972, 39–119 | MR | Zbl
[2] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196 | DOI | MR | Zbl
[3] N. G. Moshchevitin, On some open problems in Diophantine approximation, arXiv: 1202.4539
[4] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's theorem by elementary methods, arXiv: 1207.4546
[5] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's theorem, arXiv: 1207.5168
[6] I. D. Kan, D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich”, Izv. Math., 78:2 (2014), 293–353 | DOI | DOI | MR | Zbl
[7] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Moscow J. Combin. Number Theory, 4:1 (2014), 78–117 | MR | Zbl
[8] ShinnYih Huang, “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR | Zbl
[9] I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. III”, Izv. Math., 79:2 (2015), 288–310 | DOI | DOI | MR | Zbl
[10] M. Magee, H. Oh, D. Winter, Expanding maps and continued fractions, arXiv: 1412.4284
[11] O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4:1 (2004), 63–76 | DOI | MR | Zbl
[12] R. C. Vaughan, The Hardy–Littlewood method, Cambridge Tracts in Math., 80, Cambridge Univ. Press, Cambridge–New York, 1981, xi+172 pp. | MR | MR | Zbl | Zbl
[13] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963, 224 pp. | MR | Zbl