A strengthening of a~theorem of Bourgain and Kontorovich.~IV
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1094-1117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the denominators of finite continued fractions all of whose partial quotients belong to the alphabet $\{1,2,3,4\}$ form a set of positive density. The analogous theorem was known earlier only for alphabets of larger cardinality. The first result of this kind was obtained in 2011 for the alphabet $\{1,2,\dots,50\}$ by Bourgain and Kontorovich. In 2013, the present author, together with Frolenkov, proved the corresponding theorem for the alphabet $\{1,2,3,4,5\}$. A 2014 result of the present author dealt with the alphabet $\{1,2,3,4,10\}$.
Keywords: continued fraction, trigonometric sum
Mots-clés : continuant, Zaremba's conjecture.
@article{IM2_2016_80_6_a5,
     author = {I. D. Kan},
     title = {A strengthening of a~theorem of {Bourgain} and {Kontorovich.~IV}},
     journal = {Izvestiya. Mathematics },
     pages = {1094--1117},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a5/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - A strengthening of a~theorem of Bourgain and Kontorovich.~IV
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1094
EP  - 1117
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a5/
LA  - en
ID  - IM2_2016_80_6_a5
ER  - 
%0 Journal Article
%A I. D. Kan
%T A strengthening of a~theorem of Bourgain and Kontorovich.~IV
%J Izvestiya. Mathematics 
%D 2016
%P 1094-1117
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a5/
%G en
%F IM2_2016_80_6_a5
I. D. Kan. A strengthening of a~theorem of Bourgain and Kontorovich.~IV. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1094-1117. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a5/

[1] S. K. Zaremba, “La méthode des “bons treillis” pour le calcul des intégerales multiples”, Applications of number theory to numerical analysis (Univ. Montreal, Montreal, Que., 1971), Academic Press, New York, 1972, 39–119 | MR | Zbl

[2] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196 | DOI | MR | Zbl

[3] N. G. Moshchevitin, On some open problems in Diophantine approximation, arXiv: 1202.4539

[4] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's theorem by elementary methods, arXiv: 1207.4546

[5] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain–Kontorovich's theorem, arXiv: 1207.5168

[6] I. D. Kan, D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich”, Izv. Math., 78:2 (2014), 293–353 | DOI | DOI | MR | Zbl

[7] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II”, Moscow J. Combin. Number Theory, 4:1 (2014), 78–117 | MR | Zbl

[8] ShinnYih Huang, “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 | DOI | MR | Zbl

[9] I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. III”, Izv. Math., 79:2 (2015), 288–310 | DOI | DOI | MR | Zbl

[10] M. Magee, H. Oh, D. Winter, Expanding maps and continued fractions, arXiv: 1412.4284

[11] O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4:1 (2004), 63–76 | DOI | MR | Zbl

[12] R. C. Vaughan, The Hardy–Littlewood method, Cambridge Tracts in Math., 80, Cambridge Univ. Press, Cambridge–New York, 1981, xi+172 pp. | MR | MR | Zbl | Zbl

[13] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963, 224 pp. | MR | Zbl