$p$-adic Brownian motion
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1084-1093

Voir la notice de l'article provenant de la source Math-Net.Ru

We define $p$-adic Brownian motion (Wiener process) and study its properties. We construct a presentation of the trajectories of this process by their series expansions with respect to van der Put's basis and show that they are nowhere differentiable functions satisfying the $p$-adic Lipschitz condition of order $1$. We define the $p$-adic Wiener measure on the space of continuous functions and study its properties.
Keywords: $p$-adic numbers, Wiener process, Brownian motion, van der Put's basis, trajectories of the Wiener process.
@article{IM2_2016_80_6_a4,
     author = {E. I. Zelenov},
     title = {$p$-adic {Brownian} motion},
     journal = {Izvestiya. Mathematics },
     pages = {1084--1093},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a4/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - $p$-adic Brownian motion
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1084
EP  - 1093
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a4/
LA  - en
ID  - IM2_2016_80_6_a4
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T $p$-adic Brownian motion
%J Izvestiya. Mathematics 
%D 2016
%P 1084-1093
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a4/
%G en
%F IM2_2016_80_6_a4
E. I. Zelenov. $p$-adic Brownian motion. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1084-1093. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a4/