Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1057-1083.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a function $g(x)\in L^1[0,1]$ with monotone decreasing Fourier–Walsh coefficients $\{c_k(g)\}_{k=0}^\infty\downarrow$ which is universal in $L^p[0,1]$, $p\geqslant1$, in the sense of modification with respect to the signs of the Fourier coefficients for the Walsh system. In other words, for every function $f\in L^p[0;1]$ and every $\varepsilon>0$ one can find a function $\widetilde f\in L^p[0;1]$ such that the measure $|\{x\in[0;1]\colon f(x)=\widetilde f(x)\}|$ is greater than $1-\varepsilon$, the Fourier series of $\widetilde f(x)$ in the Walsh system converges to $\widetilde f(x)$ in the $L^p[0,1]$-norm and $|c_k(\widetilde f)|=c_k(g)$, $k\in\operatorname{Spec}(\widetilde f)$. We also prove that for every $\varepsilon$, $0\varepsilon1$, one can find a measurable set $E\subset [0,1]$ of measure $|E|>1-\varepsilon$ and a function $g\in L^1[0;1]$ with $0$, $k=0,1,2,\dots$, such that for every function $f\in L^1[0,1]$ there is a function $\widetilde f\in L^1[0,1]$ with the following properties: $\widetilde f$ coincides with $f$ on $E$, the Fourier–Walsh series of $\widetilde f(x)$ converges to $\widetilde f(x)$ in the norm of $L^1[0,1]$ and the absolute values of all terms in the sequence of the Fourier–Walsh coefficients of the newly obtained function satisfy $|c_k(\widetilde f)|=c_k(g)$, $k=0,1,2,\dots$ .
Keywords: Walsh system, convergence in the $L^1$-norm.
Mots-clés : Fourier coefficients
@article{IM2_2016_80_6_a3,
     author = {M. G. Grigoryan and K. A. Navasardyan},
     title = {Universal functions in `correction' problems guaranteeing the convergence of {Fourier--Walsh} series},
     journal = {Izvestiya. Mathematics },
     pages = {1057--1083},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - K. A. Navasardyan
TI  - Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1057
EP  - 1083
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/
LA  - en
ID  - IM2_2016_80_6_a3
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A K. A. Navasardyan
%T Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series
%J Izvestiya. Mathematics 
%D 2016
%P 1057-1083
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/
%G en
%F IM2_2016_80_6_a3
M. G. Grigoryan; K. A. Navasardyan. Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1057-1083. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/

[1] N. N. Luzin', “K' osnovnoi teoremѣ integralnago ischisleniya”, Matem. sb., 28:2 (1912), 266–294 | Zbl

[2] D. Menchoff, “Sur la convergence uniforme des séries de Fourier”, Matem. sb., 11(53):1-2 (1942), 67–96 | MR | Zbl

[3] D. E. Menshov, “O ryadakh Fure summiruemykh funktsii”, Tr. MMO, 1, GITTL, M.–L., 1952, 5–38 | MR | Zbl

[4] D. E. Menshov, “O ryadakh Fure nepreryvnykh funktsii”, Matematika, v. IV, Uch. zapiski Mosk. gos. un-ta, 148, Izd-vo Mosk. un-ta, M., 1951, 108–132 | MR

[5] K. I. Oskolkov, “Uniform modulus of continuity of summable functions on sets of positive measure”, Soviet Math. Dokl., 17 (1976), 1028–1030 | MR | Zbl

[6] B. S. Kashin, G. G. Kosheleva, “An approach to “correction” theorems”, Moscow Univ. Math. Bull., 43:4 (1988), 1–5 | MR | Zbl

[7] J. J. Price, “Walsh series and adjustment of functions on small sets”, Illinois J. Math., 13 (1969), 131–136 | MR | Zbl

[8] Š. V. Heladze, “Convergence of Fourier series almost everywhere and in the $L$-metric”, Math. USSR-Sb., 35:4 (1979), 527–539 | DOI | MR | Zbl

[9] M. G. Grigorian, “On the convergence of Fourier series in the metric of $L^1$”, Anal. Math., 17:3 (1991), 211–237 | DOI | MR | Zbl

[10] M. G. Grigorian, “On the representation of functions by orthogonal series in weighted $L^p$ spaces”, Studia. Math., 134:3 (1999), 207–216 | MR | Zbl

[11] S. A. Episkoposian, M. G. Grigorian, “$L^p$-convergence of greedy algorithm by generalized Walsh system”, J. Math. Anal. Appl., 389:2 (2012), 1374–1379 | DOI | MR | Zbl

[12] L. D. Gogoladze, T. Sh. Zerekidze, “O sopryazhennykh funktsiyakh neskolkikh peremennykh”, Soobsch. AN Gruz. SSR, 94:3 (1979), 541–544 | MR | Zbl

[13] M. G. Grigorian, “On the $L^p_\mu$-strong property of orthonormal systems”, Sb. Math., 194:10 (2003), 1503–1532 | DOI | DOI | MR | Zbl

[14] S. V. Kislyakov, “Kolichestvennyi aspekt teorii ob ispravlenii”, Issledovaniya po lineinym operatoram i teorii funktsii. IX, Zap. nauchn. sem. LOMI, 92, Izd-vo «Nauka», Leningrad. otd., L., 1979, 182–191 | MR | Zbl

[15] A. M. Olevskii, “The existence of functions with unremovable Carleman singularities”, Soviet Math. Dokl., 19 (1978), 102–106 | MR | Zbl

[16] V. N. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[17] R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:1 (1996), 173–187 | DOI | MR | Zbl

[18] S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379 | MR | Zbl

[19] P. Wojtaszczyk, “Greedy algorithm for general biorthogonal systems”, J. Approx. Theory, 107:2 (2000), 293–314 | DOI | MR | Zbl

[20] T. W. Körner, “Decreasing rearranged Fourier series”, J. Fourier Anal. Appl., 5:1 (1999), 1–19 | DOI | MR | Zbl

[21] R. Gribonval, M. Nielsen, On the quasi-greedy property and uniformly bounded orthonormal systems, Research report R-2003-09, 2003, 6 pp. https://hal.inria.fr/inria-00576212

[22] M. G. Grigorian, K. S. Kazarian, F. Soria, “Mean convergence of orthonormal Fourier series of modified functions”, Trans. Amer. Math. Soc., 352:8 (2000), 3777–3798 | DOI | MR | Zbl

[23] G. G. Gevorkyan, A. Kamont, “Two remarks on quasi-greedy bases in the $L_1$ spaces”, J. Contemp. Math. Anal., 40:1 (2005), 2–14 | MR | Zbl

[24] E. D. Livshits, “Optimality of the greedy algorithm for some function classes”, Sb. Math., 198:5 (2007), 691–709 | DOI | DOI | MR | Zbl

[25] M. G. Grigorian, “Convergence in the $L^p$ of greedy algorithm by the trigonometric system”, J. Contemp. Math. Anal., 39:5 (2004), 35–48 | MR

[26] M. G. Grigoryan, S. L. Gogyan, “Nelineinaya approksimatsiya po sisteme Khaara i modifikatsii funktsii”, Anal. Math., 32:1 (2006), 49–80 | DOI | MR | Zbl

[27] S. Gogyan, “Greedy algorithm with regard to Haar subsystems”, East J. Approx., 11:2 (2005), 221–236 | MR | Zbl

[28] M. G. Grigorian, R. E. Zink, “Greedy approximation with respect to certain subsystems of the Walsh orthonormal system”, Proc. Amer. Math. Soc., 134:12 (2006), 3495–3505 | DOI | MR | Zbl

[29] M. G. Grigorian, A. A. Sargsyan, “Non-linear approximation of continuous functions by the Faber–Schauder system”, Sb. Math., 199:5 (2008), 629–653 | DOI | DOI | MR | Zbl

[30] A. V. Sil'nichenko, “Rate of convergence of greedy algorithms”, Math. Notes, 76:4 (2004), 582–586 | DOI | DOI | MR | Zbl

[31] G. Amirkhanyan, “Convergence of greedy algorithm in Walsh system in $L_p$”, J. Contemp. Math. Anal., 43:3 (2008), 127–134 | DOI | MR | Zbl

[32] K. A. Navasardyan, A. A. Stepanyan, “On series by Haar system”, J. Contemp. Math. Anal., 42:4 (2007), 219–231 | DOI | MR | Zbl

[33] M. G. Grigorian, “On the Fourier–Walsh coefficients”, Real Anal. Exchange, 35:1 (2010), 157–166 | MR | Zbl

[34] M. G. Grigoryan, “The strong $L^1$-greedy property of the Walsh system”, Russian Math. (Iz. VUZ), 52:5 (2008), 20–31 | DOI | MR | Zbl

[35] M. G. Grigoryan, “Modifications of functions, Fourier coefficients and nonlinear approximation”, Sb. Math., 203:3 (2012), 351–379 | DOI | DOI | MR | Zbl

[36] K. A. Navasardyan, “Series with monotone coefficients in the Walsh system”, J. Contemp. Math. Anal., 42:5 (2007), 258–269 | DOI | MR | Zbl

[37] M. G. Grigoryan, V. G. Krotov, “Luzin's correction theorem and the coefficients of Fourier expansions in the Faber–Schauder system”, Math. Notes, 93:2 (2013), 217–223 | DOI | DOI | MR | Zbl

[38] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl

[39] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiii+368 pp. | DOI | MR | Zbl | Zbl

[40] R. E. A. C. Paley, “A remarkable series of orthogonal functions. I, II”, Proc. London Math. Soc. (2), 34 (1932), 241–264, 265–279 | DOI | MR | Zbl

[41] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[42] K. A. Navasardyan, “On null-series by double Walsh system”, J. Contemp. Math. Anal., 29:1 (1994), 50–68 | MR | Zbl