Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series
Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1057-1083

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a function $g(x)\in L^1[0,1]$ with monotone decreasing Fourier–Walsh coefficients $\{c_k(g)\}_{k=0}^\infty\downarrow$ which is universal in $L^p[0,1]$, $p\geqslant1$, in the sense of modification with respect to the signs of the Fourier coefficients for the Walsh system. In other words, for every function $f\in L^p[0;1]$ and every $\varepsilon>0$ one can find a function $\widetilde f\in L^p[0;1]$ such that the measure $|\{x\in[0;1]\colon f(x)=\widetilde f(x)\}|$ is greater than $1-\varepsilon$, the Fourier series of $\widetilde f(x)$ in the Walsh system converges to $\widetilde f(x)$ in the $L^p[0,1]$-norm and $|c_k(\widetilde f)|=c_k(g)$, $k\in\operatorname{Spec}(\widetilde f)$. We also prove that for every $\varepsilon$, $0\varepsilon1$, one can find a measurable set $E\subset [0,1]$ of measure $|E|>1-\varepsilon$ and a function $g\in L^1[0;1]$ with $0$, $k=0,1,2,\dots$, such that for every function $f\in L^1[0,1]$ there is a function $\widetilde f\in L^1[0,1]$ with the following properties: $\widetilde f$ coincides with $f$ on $E$, the Fourier–Walsh series of $\widetilde f(x)$ converges to $\widetilde f(x)$ in the norm of $L^1[0,1]$ and the absolute values of all terms in the sequence of the Fourier–Walsh coefficients of the newly obtained function satisfy $|c_k(\widetilde f)|=c_k(g)$, $k=0,1,2,\dots$ .
Keywords: Walsh system, convergence in the $L^1$-norm.
Mots-clés : Fourier coefficients
@article{IM2_2016_80_6_a3,
     author = {M. G. Grigoryan and K. A. Navasardyan},
     title = {Universal functions in `correction' problems guaranteeing the convergence of {Fourier--Walsh} series},
     journal = {Izvestiya. Mathematics },
     pages = {1057--1083},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - K. A. Navasardyan
TI  - Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series
JO  - Izvestiya. Mathematics 
PY  - 2016
SP  - 1057
EP  - 1083
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/
LA  - en
ID  - IM2_2016_80_6_a3
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A K. A. Navasardyan
%T Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series
%J Izvestiya. Mathematics 
%D 2016
%P 1057-1083
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/
%G en
%F IM2_2016_80_6_a3
M. G. Grigoryan; K. A. Navasardyan. Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1057-1083. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/