Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2016_80_6_a3, author = {M. G. Grigoryan and K. A. Navasardyan}, title = {Universal functions in `correction' problems guaranteeing the convergence of {Fourier--Walsh} series}, journal = {Izvestiya. Mathematics }, pages = {1057--1083}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/} }
TY - JOUR AU - M. G. Grigoryan AU - K. A. Navasardyan TI - Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series JO - Izvestiya. Mathematics PY - 2016 SP - 1057 EP - 1083 VL - 80 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/ LA - en ID - IM2_2016_80_6_a3 ER -
%0 Journal Article %A M. G. Grigoryan %A K. A. Navasardyan %T Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series %J Izvestiya. Mathematics %D 2016 %P 1057-1083 %V 80 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/ %G en %F IM2_2016_80_6_a3
M. G. Grigoryan; K. A. Navasardyan. Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series. Izvestiya. Mathematics , Tome 80 (2016) no. 6, pp. 1057-1083. http://geodesic.mathdoc.fr/item/IM2_2016_80_6_a3/